

International Journal on

“Technical and Physical Problems of Engineering”

(IJTPE)

Published by International Organization on TPE (IOTPE)

ISSN 2077-3528

IJTPE Journal

www.iotpe.com

ijtpe@iotpe.com

March 2010 Issue 2 Volume 2 Number 1 Pages 73-78

73

COMPOSITION OF A GAME BASED SIMULATION FOR SOFTWARE
DEVELOPMENT PROCESS

A. Tizkar Sadabadi

Department of Computer Science, University of SEUA (State Engineering University of Armenia), Yerevan, Armenia

al_tz2@yahoo.com

Abstract- Simulations are today very common and are
used frequently for education, testing, research,
development, gaming etc. No matter in what area it is
used, it is used for the same purpose, to imitate a realistic
event. With a simulation, certain factors are manipulated
depending on what event is being simulated, like for
example at a school for pilots, they use a simulator to
imitate the flight. However, this report is not about flight
simulators, but about how to proceed to develop a game,
which simulates a certain software development project.
By developing a simulation model, based on a specific
software development model, that model could be
implemented in a project game, this to give the player the
possibility to control and steer certain events in the
project and to vary the result of the game. Why can
simulation enhance traditional software engineering? An
important factor is that it provides insights into complex
process behavior. Like many processes, software
processes can contain multiple feedback loops, such as
associated with correction of defects in design or code.
Delays resulting from these effects may range from
minutes to years. The complexity resulting from these
effects and their interactions makes it almost impossible
for human (mental) analysis to predict the consequences.
Unfortunately, traditional process analysis does not shed
much light on these behavioral issues, and the usual way
to resolve them is to run the actual process and observe
the consequences. This can be a very costly way to
perform process improvement.

Keywords: Simulation, Software Development Process,
E-Education, CBT.

I. INTRODUCTION
While the software industry has had remarkable

success in developing software that is of an increasing
scale and complexity, it has also experienced a steady and
significant stream of failures. Most of us are familiar with
public disasters such as failed Mars landings, rockets
carrying satellites needing to be destroyed shortly after
takeoff.

We believe the root cause of this problem lies in
education: current software engineering courses typically
pay little to no attention to students being able to practice

issues surrounding the software engineering process. The
typical software engineering course consists of a series of
lectures in which theories and concepts are
communicated, and, in an attempt to put this knowledge
into practice, a small software engineering project that the
students must develop.

II. SELECTION OF SIMULATION MODEL

Simulations are made up events that are supposed to
act realistic, and when they do, they are a simulation of a
realistic event. Simulations are very common today in
different working areas. Like the pilots for instance, they
do not have to get into a plane right away and learn how
to fly, first they simulate a flight on a flight simulator to
practice what they have learned during their studies. Then
when the “teacher” thinks that the students are ready,
they can practice with a real plane. That is why
simulators are developed in the first place, to teach
people how to do things, before they actually do it in real
life.

There are different kinds of simulators, continuous-
and discrete simulation models. The continuous model
can, strictly speaking, only be applied on an analog
computer since the philosophy of the continuous model is
that there is a continuous time flow and the simulation is
constantly progressed [1]. But since there are no such
thing as an analog computer, the closest, someone can get
to a continuous model, is by making the time steps in a
discrete model small enough so it will be visualized as a
continuous time flow. Figure 1 shows the progress in a
continuous simulation model.

The discrete simulator model uses time steps, and can
simply be exemplified as a calendar. Days are passing,
and during every day, a certain amount of work is
accomplished, but the result is only shown after every
ended day. This means that during the simulation for one
day, nothing is shown. The characteristics of the discrete
model, is that it involves time steps and finite number of
events, and between those events, nothing happens [2].
Figure 2 shows the progress in a discrete simulation
model, and because of the time steps, the curve gets the
look of a stairway.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 2, Vol. 2, No. 1, Mar. 2010

 74

Figure 1. Continuous simulation model

Figure 2. Discrete simulation model

To compare the continuous simulator in the example
with the calendar, it would show the work progress
during the simulation of every day that gives a straight
line as Figure 1. The continuous model could be applied
like a discrete model. If the time steps are small enough,
the user will not be able to determine the difference
between a continuous- and a discrete simulation model.

Simulating different processes in software
development is possible if the processes are fully
understood by the developer. The article [3], which
focuses on the requirement phase, is an example of how it
can be done with a discrete simulation model in Figure 3.

This is a part of the model that was developed, and
describes the elicitation and documentation of
requirements. In this part of the model, there is a time
step after every elicited requirement, which is shown in
Figure 3 as a loop. The time steps are very small in this
model and therefore called a continuous simulation
model. This model span over a specific time range, and
until the time limit is reached, the loop is simulating the
elicitation of requirements. When the time limit is
reached, the simulator has produced an amount of
requirements which can be further used in a software
development project, for example to make a design based
on the elicited requirements.

Figure 3. The requirements elicitation part of the simulation model [4]

This continuous simulation model if developed for
every phase in a software development project using the
waterfall model, could simply be described as one full
glass of water and four empty glasses. The full glass of
water corresponds to the estimated elicited requirements,
and the empty glasses correspond to every phase;
requirements elicitation, design, implementation and test.
When pouring the water from the first glass, the
requirements elicitation, to the next, which corresponds to
the design, there is a little less amount of water in the
second glass than the first glass, since there are usually
some drops left in the first one. This means that there can
at most be the same amount of water in the second glass
as there was in the first one, but as mentioned before
usually a little less. When pouring from the second glass
to the third, which corresponds to the implementation,
there cannot be more water than in the previous glass.
This signifies that if the water from the first glass is not
poured correct and maybe spilt, the spilling could be

compared with a real software development project as
e.g. neglecting a review, and this will have consequences
for the further pouring. This leads to that the fifth and last
glass will usually have a certain amount less water
compared to the first one. The spilling, during the
pouring, can be compared to different factors, which can
be affecting the result of the project. Take for example if
a project member becomes sick, and if the player does not
hire a substitute, this could be exemplified as a spill
during the pouring.

III. COMBINATION OF WATERFALL MODEL

AND SIMULATION MODEL
In this waterfall model, there are 4 phases to go

through; requirement elicitation, design, implementation
and test. Every phase is documented and reviewed, and a
new phase cannot be begun unless the previous phase
documentation is in baseline. When a document is put in
baseline, it means that it has been inspected and approved

begi
nnin

Tasks to
be

 completed

Task
completed

Finished
Em
pty

End

Costumer requirements Completion rate Finishing rate

Rework rate

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 2, Vol. 2, No. 1, Mar. 2010

 75

by the project leaders and project members, and the
project is ready to take a further step to the next phase.
The documentation in every phase is presented below in
Figure 4, and it is important to take in concern that this
development model was designed for a specific course,
and is not a standard development model.

Every phase produces different documents, which are
reviewed before they are put in baseline. In formal
reviews, all project members are present and members
from the different subgroups inspect the other subgroups
document to detect errors. The informal review is similar
to the formal, except that the customer is present during
the informal review. The different documents in this
waterfall model are as follows [5]:
SDP: Software Development Plan
SRS: Software Requirements Specification
SVVS: Software Verification and Validation
Specification
STLDD: Software Top Level Design Document
SVVI: Software Verification and Validation Instruction
SDDD: Software Detailed Design Document
SVVR: Software Verification and Validation Report
SSD: Software specification Document
PFR: Project Final Report.

Figure 4. Phases of the waterfall model

Figure 5. A basic model of the composition of the software development
game

A. Phase 1

 In phase 1, requirements elicitation phase, the project
leaders produce a software development plan, which will
be followed during the whole project. Then every
subgroup evoke requirements for their specific feature,
and reviews them formally within the subgroup, and
documents it in the software requirements specification.
System testers do the same thing, they make use-cases
from the evoked requirements and documents it in the
software verification and validation specification. When
all documents are finished, they go through a formal

review before they are put in baseline. The formal review
includes all project members and all members review the
other member’s work, like one subgroup reviews the
other subgroups work and so on.

B. Phase 2

In this phase, the design and test phase, the software
engineers document all methods, variables and signals,
which will be used and implemented, in the software top
level design document. The system testers make test
instructions to cover every requirement, and document it
in the software verification and validation instruction
document. They also produce monitor files, for module-
and integration testing, and checks that all requirements
are covered. When those documents are finished, they go
through a formal review, including all project members,
before put in baseline.

C. Phase 3

The third phase is where the implementation is done
and the system goes through the final test. The software
engineers produce the software detailed design document,
which describes the methods in a lower level, code level.
The system testers make a final test of the system, called
system test. When the document is done and formally
reviewed, all documents from all phases go through an
informal review. The informal review is like the formal
review, only that the customer of the system is present
and reviews the work of the project.

D. Phase 4

In the final phase all documentation is completed and
the system has passed all tests. All test documents, and
results from the tests, are put into a software verification
and validation report, and all design documents are put
into a software specification document. The last
document that is produced is the project final report,
which includes all documents in one, and is written in a
language so that software engineers can understand it.
Finally, the project report is reviewed by the project team
and ready to be handed over to the customer.

A combination of all these parts into one unit is
possible if there are clear directives about which models
to use. It has been decided, that this prototype will
include three factors, which can affect the result of the
game. The most important factor is reviews, and the other
two are project members getting sick and project budget.
A combination of these three factors can give a little
reality to the game and give the player the possibility to
steer the project. These factors have been implemented
into the simulation model, which have been developed for
this work. A discrete simulation model was developed
with small time steps, this so it will act as a continuous
simulator, based on the waterfall models criterion, and
could be built up as a game. Figure 6 shows the
composition of the different parts.

As in this case, in the project part, the waterfall model
has been used, and in the simulation part, the continuous
simulation model has been adapted. It is called
continuous, since the time steps of the discrete model are
small enough to act as a continuous simulator.

Project
(Waterfall Model)

Simulation
(Continuous Model)

Simulated
Game for
Software

Development

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 2, Vol. 2, No. 1, Mar. 2010

 76

Figure 6. The simulation model, developed for this work

IV. REQUIREMENTS SPECIFICATION
This will be a one-player game, where the player

takes the role as a project leader, PL, for a software
development project using a waterfall development
model [6]. The PL’s task is to lead a software
development project and make necessary decisions to
finish the project as well as possible. The PL gets an
amount of money depending on the size of the project,
and has to dispose them right, so he can proceed with the
project and get an approved result. There are 4 phases of
the game which the PL have to complete, and a phase
cannot be initiated unless the previous phase has been
completed and the phase document put in baseline. Every
phase of the game gives a result in percent compared to
the estimated percentage. For example in the
requirements phase, the estimated evoked requirements is
always 100%, and the result will be close to it, depending
on how many reviews are made and if no one gets sick.
Below are the different outcomes of the game:
- Project Failed (If quality percentage is below 95%)
- Project Failed (If budget is exceeded)
- Project success (If quality percentage is higher than
95% and budget not exceeded)

Player objectives are as follows:
- Project leader: A person who plays the game.
- Project leader objective 1: Initiate the project by
choosing how many functions, 1-5, will be implemented
and choose reviews, for every specific phase.
- Project leader objective 2: Choose extra reviews during
game.
- Project leader objective 3: If a project member is sick,
choose to hire a substitute.

Some guidelines were created to follow a structured
plan with intermediate goals. The development model,
used for this work, was an incremental prototyping
model, which means that everything has been developed

from an undefined requirements specification, more like a
work description, and additions have been frequently
made during the project.

The prototype includes a simulation model, Figure 6,
which simulates all four phases in the waterfall
development model; requirements specification, design,
implementation and test. The same model is used for
every phase, and shows the result of developed quantity
vs. estimated developed quantity in percent. In the game,
the quantity percentage results will become the quality
percentage of the developed product at the end of the
game.

Figure 6 shows the developed simulation model for
this thesis and it is divided into 6 sections. Every section
includes one or two tanks, with one start section and one
end section. In the start section there is an amount of
unspecified requirements in that tank, and it is always
100%. In the next section, which simulates the
requirements elicitation, there are two tanks, one for the
correct specified requirements and one for the wrong
specified requirements, and the estimated elicited
requirements is always 100%, customer demands. Section
number three is the design phase and contains of two
tanks as well, correct design and wrong design, and the
estimated design depends on the outcome of the
requirements phase. Next section, number four, is the
implementation phase, which also contains two tanks,
correct implementation and wrong implementation, and
here the estimated implementation is also depending on
the result of the previous phase, the design phase. Section
number five is the test phase, containing two tanks as
well, correct test and wrong test, and the estimated test is
here depending on the result of the implementation phase.
The last section is the final product and determines the
quality of the product, depending on the result in the test
phase. As described here, all future results, depend on the

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 2, Vol. 2, No. 1, Mar. 2010

 77

results in previous phases. In Figure 6 we can see that
there is a broken line after each phase that signifies
review, and if chosen, then the broken arrows are used,
this means that if there are no reviews selected, then no
broken arrows are used either.

When running the simulator, most of the percentage
from the start tank is moved to the correct specified
requirements tank, and a little percentage is moved to the
wrong specified requirements tank. The black arrows
show the procedure of the normal movement of
percentage between the tanks. During phase one, the
player can affect the outcome of the requirements phase
by adding a review. If the player chooses to add a review,
a little percentage will be moved from the wrong
specified requirements tank to the correct specified
requirements tank, which is indicated by the broken
arrow. This means that the percentage in the correct
specified requirements tank increase and the percentage
in the wrong specified requirements tank decrease with
the same amount. After the first phase is accomplished,
there is a certain amount of percentage in the correct
specified requirements tank, and that amount constitutes
the maximum percentage for the design phase. This
means that if the percentage in the correct specified
requirements tank is 98 %, the correct design, cannot be
higher than that. The simulation proceeds like the
previous phase, most of the percentage is moved from the
correct specified requirements tank to the correct design,
and a little percentage is moved to the wrong design,
which is indicated by the black arrows. If the player,
choose to add a review, a little percentage is moved from
the wrong design tank to the correct design and to the
correct specified requirements tank, broken arrow. The
percentage, which is moved to the correct specified
requirements tank, is automatically moved to the correct
design tank. The following phases use the same principle,
which means that the correct percentage is decreasing
through the whole project, but can be adjusted at bit with
reviews. After the last phase, the test phase, is finished,
there is an amount of percentage in the correct test tank.
This percentage constitutes the quality of the final
product. This means that the correction of the tests is
included in the review option in the test phase. If the
player chooses review in the test phase, it automatically
corrects the test cases. One thing in the test section which
differs from the other sections is that there is no arrow
from correct implementation to wrong test, this because
when something is correct implemented, it cannot be
wrong in test.

Since this is a prototype, there are only three factors
chosen which can affect the outcome of the game, if all
factors would be implemented, the game would not be
finished within the time limit of the thesis. The factors
included are; budget, the choice to make reviews and the
choice to hire a substitute if a project member is sick. The
review- and sick member factors affect the budget, which
is different for every level of the game, and depending on
the project leaders decisions, the outcome of the game
differs. Levels are different degrees of difficulty in game.

V. DESIGN
First a paper design prototype was developed for the

GUI, to show different positions of the functions in the
application. This was made to get new ideas about the
interface and its appearance, to make it as simple and
understandable as possible. Figure 7 shows the initial
window of the first paper design prototype.

The choice of factors that can affect the project result,
had to be done before the design, so there would be a
structure to follow during the design. As mentioned
before, the three factors were:
• Budget
• The choice to make reviews
• The choice to hire a substitute if a project member

gets sick.
With the first design sketch as basis, the design of the

GUI was experimented with through implementation and
consulted spontaneously with a couple of students to get
a satisfying appearance

VI. CONCLUSIONS

Simulation is the best way to bring practical training
to classical theoretical education. As that was selected
one way to realize this theory. This model isn’t so
comprehensive and complete for this purpose so this
work will be going. Numerical proposes were simple. For
this we can imagine other ways for numerical results.

Due to the fact that computer games are very popular
these days, the thought of making a simulator game for
educational purposes is close at hand. The game is a
simulator game, based on software development and was
experimented in a prototype with a few features. The
used development model for this prototype is a waterfall
model.

The used simulation model, is a discrete model,
implemented with very small time steps, so it appears as a
continuous simulation model, see Figure 6. Since this
game was not developed for entertainment, the focus has
been directed to the simulator to get a fairly realistic
game. To make it fairly realistic, certain factors had to be
added to affect the result of the game. In software
development projects, there are many factors that can
affect the project, and for this experimental prototype,
three were chosen;
1. reviews
2. budget
3. The choice to hire a substitute if a project member gets
sick.

With those factors, a playable prototype was
developed and evaluated for further development. With
certain modifications and changes, the prototype could be
improved and be a possible tool for illustrative education
and explanatory purposes. The target group would in that
case be students and future software engineers with some
experience in software development. As the prototype is
today, it cannot be used for any of these purposes, it has
to be modified and improved at certain points.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 2, Vol. 2, No. 1, Mar. 2010

 78

Figure 7. Sketched prototype for simulator’s first page GUI

ACKNOWLEDGEMENT
The great work of Ms Emily Navarro that were a

doctoral thesis and other parts for software research at
University of California, Irvine, was a great help for
developing this project and also with the cooperation of
my master thesis’s supervisor Dr. Souren Khachatryan
that was from another university and spent a valuable part
of his time for my project.

REFERENCES

[1] G. Bellinger “Simulation Types”, http://www.
outsights .com/ systems/simulation/.
[2] J.F. Ramil, “Introduction to System Dynamics
Software Process Modelling”, http://www.doc.ic.ac.uk/
~mml/feast2/papers/pdf/jfr89c_lec1.pdf.
[3] C. Andersson, L. Karlsson, J. Nedstam, M. Host and
B.I. Nilsson, “Understanding Software Processes through
System Dynamics Simulation: A Case Study”,
Proceedings of IEEE Conference on Engineering
Computer-Based Systems (ECBS), pp. 41-48, Lund,
Sweden, 8-11 April 2001.
[4] R. Acosta, C. Burns, W. Rzepka, and J. Sidoran,
“Applying Rapid Prototyping Techniques in the
Requirements Engineering Environment”, IEEE, 1994.
[5] ”Programvaru Utveckling för Stora System”,
Kompendium 1, Projekthandledning Björn Regnell, Claes
Wohlin, 1999.

[6] B. Regnell and Cl. Wohlin, “Programvaru Utveckling
för Stora System (PUSS)”, Compendium 1,
Projektledning, V1.6, 1999.

BIOGRAPHIES

Ali Tizkar Sadabadi was born in 1981
in Tabriz, Iran. He is a graduated M.Sc.
student and ready for Ph.D. in the field
of computer science and specialty of
software engineering. His academic
backgrounds are B.Eng. degree from
Azad University, Tabriz Branch,
Tabriz, Iran during 2000-2006 in the

major field of Software and Computer Engineering and
also M.Eng. degree from SEUA (State Engineering
University of Armenia), Yerevan, Armenia during 2006-
2008 with the title of master dissertation: “A Survey on
Simulation Game of Software Development Process
(Software Engineering Simulation by Animated
Models)”.
Mr. Ali Tizkar Sadabadi was an honorable student and is
on Honors and Awards of 1- Obtaining third place in
provincial competition in physics laboratory’s
tournament, 2- Honors in high school graduation, 3-
Gaining honorable places in several body readinesses’
matches.

