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Abstract- In this paper is analyzed a fuel cell Hybrid 
Power Source (HPS) topology that can operate at 
maximum power point of fuel cell stack. The HPS power 
topology and its control are simulated in Matlab - 
Simulink ® environment. The models for all used blocks 
are given and some control aspects are analyzed and 
discussed here. 
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I. INTRODUCTION 
As it is known, the fuel cell current dynamic must be 

limited in hybrid power source (HPS), especially when 
the Fuel Cell with Proton Exchange Membrane (PEMFC) 
is the main energy source of it. In the commercial 
PEMFC data sheet are mentioned some limitations for the 
level of PEMFC current regarding the ripple and slopes. 
These parameters are the main factors responsible for 
lower energy efficiency and reduced life cycle of PEMFC 
[1-6]. The level for the low frequency (LF) harmonics of 
PEMFC current set the PEMFC stack performances by 
hysteretic losses and more fuel consumption. Data sheet 
restrictions of the PEMFC ripple are specified on the 
frequencies bands and used in designing of the fuel cell 
HPS. The LF harmonics contributes with up to 10% 
reduction in the rated output power of PEMFC [7,8], so 
different solutions are proposed to mitigate of its [9-12]: 
increasing of the passive filter rated capacity, adding of 
active filters, implementing of an active control at the 
level of inverter system, using of interleaved converters, 
etc. For mono-phase inverter system powered by fuel cell 
HPS, the LF harmonics appear on high DC voltage bus at 
even multiples of twice of the grid frequency. For three-
phase case, the LF harmonics appear at multiples of triple 
of grid frequency. These LF harmonics are propagated 
back through boost DC-DC converter on the HPS DC 
voltage bus. A HPS topology combines two or more 
energy sources and energy storage devices (ESD) that 
work together to supply the inverter system or store 
energy in ESD (such as stack of batteries and/or 
ultracapacitors) [13-16]. The HPS output port is a 
regulated DC voltage port [17]. The main control 
objective for the HPS vehicle applications is short 
respond to high energy demands [18-21]. When load 

require more power than is currently available from the 
PEMFC’s stack, the bidirectional converter drains energy 
from those ESD in order to make up the lack (see Figure 
1 adapted from [21]). 

 

 
 

Figure 1. Hybrid power source topology 
 
For high energy efficiency, in fuel cell HPS the 

PEMFC stack must operates in the region close to 
maximum power point (MPP) at rated fuel flow [22-25]. 
The fuel flow level is changed by fuel cell current if ESD 
state of charge (SOC) is in the admissible range. The 
PEMFC stack (PFC) and ESD stack (PESD) assure the 
power flow on LV DC bus via the MPP boost converter 
(P1) and bidirectional converter (P2), respectively. The 
power balance is Pload=P1+P2, and the power 
management is assures by the MPP controller and LV DC 
bus controller.  The fuel cell MPP current (IMPP) is 
tracked in an adaptive feedback loop by injecting the 
probing current [26, 27]. The power ripple becomes 
lowest when the operation point gets closer to MPP [28]. 
Also, using of ultracapacitors as ESD in fuel cell-based 
vehicles permits reduction of the hydrogen consumption 
and a reliable PEMFC operating under sharp power 
pulses [29, 30, 31]. 

In this paper, the modelling analysis will be focused 
on operating control of the fuel cell HPS at MPP of 
PEMFC stack. The remainder of the paper is organized as 
follows. The analyzed HPS topology is shown in Section 
2. Section 3 presents the proposed modelling of fuel cell 
HPS topology in the Matlab-Simulink® environment. 
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Section 4 shows the appropriate control of both HPS 
controllers: hysteretic current controller and MPP 
tracking controller. Section 5 shown representative 
simulation results and last section concludes the paper. 

 
II. ANALYZED FUEL CELL HPS TOPOLOGY 
In Figure 2 is shown the HPS topology that will be 

analyzed in this paper. Note that ESD are directly 
connected to the LV DC bus. Consequently, the voltage 
on LV DC bus will have a slow variation in order to 
assure the balance of power flows when the MPP is 
changed. This choice does not affect the MPP tracking 
process. In this case the power balance is Pload=P1+PESD, 
where PESD=Pbatt+PUcap. 

The MPP boost converter is an appropriate solution to 
assure a low PEMFC current ripple. A hysteretic current 
controller is used to generate the switching command. 
The current error, IMPP-IPEMFC, is used to turn the switch 
on and off, resulting in free-running operation.  

 

 
 

Figure 2. The MPP sequence for the 1.2 kW PEMFC stack 
 

The load dynamic is simulated by the load sequence. 
The fuel flow controller is replaced with a MPP sequence 
that simulates the MPP changing in time as in Figure 3.  

The dynamic of MPP in time must be tracked by MPP 
tracking controller in the adaptive feedback loop based on 
extremum seeking control (Figure 4). The probing signal 
is a sine wave, which is superimposed over the start 
current sequence (and this may be correlated with the 
start-up of PEMFC stack).  

The parameters for Ballard Nexa PEMFC are shown 
in Table 1 at nominal fuel flow rate (12.2 lpm) [32], 
where VPEMFC0 is output voltage from no-load, VMPP - 
output voltage, IMPPP - output current, PMPP - power, and 
ZMPP = VMPP/IMPP. 

 

Table 1. Base parameters for Ballard Nexa PEMFC 
 

PEMFC stack  VPEMFC0 
[V] 

VMPP 
[V] 

IMPP 
[A] 

PMPP 
[W] 

ZMPP 
[Ω] 

Ballard Nexa 42,2 26,6 45 1200 0,59 
 
The rated load power is Pload=η1PMPP considering 

P2≅0. For η1≅90% (where η1 is the MPP boost converter 
efficiency) results the rated load power of Pload≅1080W= 
VLVbus×Iload. For example, if Iload=10 A, then VLVbus≅108V. 
These levels are used in choosing of the proper ESD to 
assure the power balance. 

 

 
 

Figure 3. The tracking of the MPP sequence for 1.2 kW PEMFC stack 
 

III. MODELLING OF FUEL CELL HPS 
In this section, the used models for PEMFC stack, 

ESD stack and boost converter are briefly explained. 
 
A. Model of PEMFC Stack 

Many improvements have been made to fuel cell 
model in recent years [33, 34, 35]. The variation of the 
PEMFC temperature (T) in time (t) depends by fuel cell 
current (IFC) and can be calculated as: 
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where the parameters are mentioned in [36,37]. The 
hydrogen partial pressure can be obtained with: 
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where tH2 is hydrogen time constant (s). Similarly, oxygen 
partial pressure can be obtained: 

2
22

2

2
2 ),

4
(

1

1

Oop

catode
OFC

in
O

O

O
O kTR

V
tI

FU
NQ

st
k

p
⋅⋅

=−
⋅+

=  (3) 

where: 
- tO2 is oxygen time constant (s); 
- Vcathode - Volume of the cathode (m3); 
- in

HQ 2 - Oxygen input flow (kmol s-1 or l/min); 
- kO2 - Oxygen valve molar constant [kmol (atm s)-1];  

Usually, the hydrogen and oxygen input flows are 
inputs for PEMFC model. The fuel flow rate is chosen as 
input parameter in this paper. 
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Figure 4. Analyzed fuel cell HPS topology (adapted from [21]) 
 
The Nernst’s voltage is implemented as: 

( )

⎟
⎠
⎞⎜

⎝
⎛ +⋅⋅⋅+

+−⋅⋅−=

−

−

2ln10308.4

298105.8229.1

2
2

5

4

O
H

Nerst

PPT

TE
 (4) 

The activation voltage loss can be written as: 
( ) ( )24321 lnln OFCact CITTE ⋅+⋅⋅+⋅+= ξξξξ  (5) 

where CO2 represents the dissolved oxygen concentration 
in the interface of the cathode catalyst and the ξi 
parameters, i=1-4, are mentioned in references [33, 35, 
36]. 
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The ohmic voltage loss is implemented as: 
Eohmic=JFC ⋅ Rohmic 
JFC=IFC / A; Rohmic = Rm + Rc;; Rm=rm ⋅ tm / A (7) 

where: 
Rohmic is the ohmic resistance (Ω); 
JFC - Current density (A/cm2); 
Rm - Echivalent membrane resistance (Ω); 
Rc - Contact resistance between membrane and electrodes 
(Ω); 
tm - membrane thickness [cm]; 
A - Activation aria (cm2); 
rm - Resistivity of Nafion membrane (Ωcm2m-1): 
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where λm represent the water content of the membrane 
and it is a input of PEMFC model set to 2.  

The concentration voltage loss is implemented in the 
subsystem 5 and can be written as: 
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 (9) 

where B is a modeling constant (V) and Jmax represents 
the maximum current density (A/cm2). 
The PEMFC output voltage can be calculated as: 

   ( -  -  )FC Nerst ohmic dV N E E V= ⋅  (10) 

where Vd  is voltage over Ra resistance and Ra is 
equivalent resistance representing the sum of activation 
and concentration resistances:  
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The PEMFC dynamic related to the Ra resistance in 
parallel with double layer capacitor (C) is implemented 
as: 
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where tFC=C⋅Ra represents the fuel cell time constant. 
 
B. Model of Mixed ESD Stack 

The used battery model in this paper is well known 
[38]. The exponential zone dynamics is modeled by: 

)exp()(exp qBAqE ⋅−⋅= (13) 
where: 
q=ibatt⋅t is current battery capacity (Ah); 
ibatt = Battery current (A); 
A = Exponential voltage (V); 
B = Exponential capacity (Ah)-1. 
Battery operating mode is modeled by S signal, which is 
the output of a comparison block that compare the low-
pass filtered battery current, iLPFbatt, with zero reference. 
Consequently, S = 0 during battery discharge (iLPFbatt >0) 
and S = 1 during battery charging (iLPFbatt <0). Finally, the 
battery voltage, EBatt, is given by charge (fc) or discharge 
(fd) function as: 
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where: 
Ew is a constant – the working battery voltage (V); 
Kc = Polarization constant V/(Ah); 
Kr = Polarization resistance (Ω); 
iLPFbatt = Low frequency battery current dynamics (A); 
Q = Maximum battery capacity (Ah). 

Battery state of charge, SOCbatt, is computed as: 
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The parameters for used 160V/38Ah battery are:        
A = 15V, B = 0.375(Ah)-1, Kc = 0.03 V/(Ah), Kr = 0.03Ω, 
Ew = 163V, and Q = 43Ah. Internal resistance, rbatt, is set 
of 0.04 Ω and the battery output voltage, Vbatt, is 
computed as:  

battbattbattbatt irEV ⋅−=  (16) 
For the used 100F/160V ultracapacitors stack is used a 

first order model [35,36] with the series, Rs, and parallel, 
Rp, resistances set at 0.01 Ω and 1 kΩ, respectively. 

 
C. Model of Boost Converter  

The boost converter model is well known, so only the 
used parameters are given below. In on-state both IGBT 
and FW-Diode models have a Ron internal resistance and 
a Lon inductance of 0.01Ω and 1μH, respectively, but the 
forward voltage, VF, is set different to 1V and 0.8V, 
respectively. Also, the fall time, Tf, and tail time, Tt, is set 
different to 1μs and 2μs, respectively. Both IGBT and 
FW-Diode models use a series RC snubber circuit with 
Csnubber=0.1μH and Rsnubber = 100Ω. The boost inductance, 
Lboost, is set to 10mH value and its series resistance, rL, at 
10mΩ. 
 

IV. CONTROL OF FUEL CELL HPS 
In this section, the HPS control is analyzed and 

briefly explained. 
 

A. Hysteretic Current Controller 
Switching command for boost converter is obtained 

using a hysteretic current controller (see Figure 5). The 
input current is the difference between the fuel cell 
current, ifc, and the current output of the MPP tracking 
controller that estimate the MPP fuel cell current in an 
adaptive loop (see Figure 6). 
The operating relationships of boost converter are  
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for IGBT on-state and FW-Diode on-state, respectively. 
For example, at rated load and fuel cells stack 

operating at MPP (VFC = VMPP = 26.6V, IFC = IMPP = 45A) 
with a ripple factor of fuel cell current of about RFFC = 
5%, if VLVbus = 100V, Lboost = 10mH, and neglecting the 
resistive effect in relationships (11), then switching 
period is T ≅ 1kHz (see relation 18): 
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Figure 5. Hysteretic current controller of the boost converter 

B. MPP Tracking Controller 
The adaptive MPP feedback loop using a high-pass 

filter is explained in [26]. The advantages of using a 
band-pass filter centred on the sine frequency are shown 
in [39, 40]. After normalization of PEMFC power, Pfc, 
with k gain (=1/Area), the probing power signal is filtered 
and demodulated by multiplication with 1 Hz sine dither. 
After that, it is integrated and amplified by k1 gain and, 
finally, is superimposed on it the amplified dither 
(k2sinωt) (Figure 5). Some power spectrums are shown in 
next section. It is shown that only first three harmonics of 
probing power signal are important in the MPP tracking. 

 

 
 

Figure 6. MPP tracking controller (adapted from [39]) 
 

V. SIMULATION RESULTS 
The time for MMP tracking is around of hundreds of 

seconds when the start current is zero (Figure 3). In 
Figure 7 and 8 are shown the process of MPP tracking 
when the PEMFC operation (close of MPP) is perturbed 
by a pulse in the fuel flow rate (that gives ΔP ≅ 500W). It 
can be observed that the time for MMP tracking is less of 
ten second. The PEMFC behaviour in the tracking of the 
MPP sequence shown in Figure 3 is presented in Figure 
9. Without the bidirectional converter and its controller 
(see Figures 1 and 2), the voltage on the LV DC bus, 
VLVbus, is around the ESD nominal voltage value to assure 
the power balance (see Figure 10). 
 

 
 

Figure 7. The MPP tracking in the P-I phase plane 
 

 
Figure 8. The MPP tracking in the U-I phase plane 
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