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Abstract- Permanent Magnet (PM) stepper motors are 
widely used in accurate systems which are affected by 
external disturbances and parameters uncertainty. Also, 
an appropriate nonlinear controller is needed when the 
problem is to track the reference signal. In this paper, a 
robust adaptive controller is presented to control rotor 
angular position in stepper motors. The main idea to 
make a robust controller is to use an adaptive control 
system based on type-2 fuzzy sets. Finally, simulations 
are implemented to control stepper motor position in two 
cases: certain and uncertain equations. Simulation results 
show that proposed controller has a better performance in 
tracking and robustness compare to type-1 fuzzy 
controller. 
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I. INTRODUCTION 
Stepper motor is an electromechanical nonlinear 

motor which has been designed to rotate in specific 
angular position. Stepper motors require simple and 
cheap controllers for position and speed control. 
Therefore, these motors are very popular in industrial 
applications and are widely used in different industries. 
DC motors were used in the past for positioning systems. 
Permanent magnet stepper motors have become a popular 
alternative to the traditionally used brushed DC motors 
(BDCM) for many high performance motion control 
applications for several reasons: better reliability because 
of the elimination of mechanical brushes, better heat 
dissipation as there are no rotor windings, higher torque-
to-inertia ratio, lower price and easy interfacing with 
digital systems. The shaft or spindle of a stepper motor 
rotates in discrete step increments when electrical 
command pulses are applied to it in the proper sequence. 
The motors rotation has several direct relationships to 
these applied input pulses. So, the changes in shaft 
position can generate oscillations or cause a long delay in 
the output (torque) which is related to selected controller. 

Today, PM stepper motors are widely used in 
numerous motion control applications such as robotics, 
printers, and digital control circuits and so on. Recently, 
various methods have been introduced for rotor 
positioning control and determination of proper control 
signals in PM stepper motors. It is important that a 
nonlinear controller will be required due to nonlinear 
structure of PM stepper motors while output tracking 
problem is represented. In recent decades, adaptive 
algorithms have been applied to PM stepper motors more 
than before [1]. On the other hand, the other methods 
such as sliding-mode control [2, 3] and adaptive robust 
control have been developed specially for uncertain 
systems. [4-7]. Also, many of the papers focus on system 
diagnosis and control based on neural networks. Neural 
networks are capable in learning input-output mapping 
rules of nonlinear and complicated systems and they are 
very popular due to this capability [8-10]. The neural 
network is designed based on RBF model and trained for 
stepper motor diagnosis. In addition, combination of 
fuzzy systems and adaptive control is used to design 
controllers especially in canonical systems [13, 14]. This 
paper presents an adaptive robust controller for angular 
positioning control in PM stepper motors. In this paper, 
we use type-2 fuzzy systems in order to make a robust 
controller because type-2 fuzzy systems have the 
capability to cover and minimize all uncertainties of the 
model. Design of this controller has been described in 
[15] completely.  

 
II. MATHEMATICAL MODEL OF PM STEPPER 

MOTOR 
In this paper, PM stepper motor has a two-winding 

stator and a permanent magnet rotor. In fact, it is a two-
phase stepper motor. The PM stepper motor operates on 
reaction between magnetic flux of the rotor and 
electromagnetic field in the stator. The strength of 
electromagnetic field in the stator is proportional to the 
amount of current sent to the stator windings and the 
number of turns in the windings. The mathematical model 
of PM stepper motor is given below: 
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where, aI  is the current in winding A, bI  is the current 
in winding B, ω is the angular velocity of the motor’s 
shaft, θr is the angular displacement of the shaft, Nr is the 
number of rotor teeth, Va is the voltage across winding A, 
Vb is the voltage across winding B, J is the rotor and load 
inertia, β is the viscous friction coefficient, L and R are 
the inductance and resistance, respectively, of the phase 
windings, km is the motor torque constant. Above 
equations include nonlinear factors which make 
difficulties for the controller design. Another method for 
describing the system model is called “DQ model” which 
can transform equation (1) to more simple equation due 
to better controller design. DQ model is obtained from 
the transfer matrix as follows [15]: 
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Voltage transfer matrix will be obtained from: 
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 (3)  

where, dV  and dI  are the direct-axis (d-axis) voltage and 
current qV  and qI  are the quadrature-axis (q-axis) 
voltage and current. According to equations (2) and (3), 
equation (1) can be rewritten as follows with respect to 
the new variables: 
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According to above factors, (4) can be written as: 
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We obtain from (6) that: 
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 Equations (8) and (9) are obtained by substituting (7) 
into (6): 

3 5
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By defining T T
1 2[ , ] [ , ]r rx x x θ θ

•
= = , equation (8) can 

be written as: 

1 2
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2
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( ) ( )q d
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=
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 (10)  

Adaptive fuzzy controller design must provide two 
following objectives in the presence of uncertainty and 
without it: 
- System output rθ  follows dθ  reference value  
- Closed-loop system be stable and all closed-loop 
variables be bounded. 

To design such a controller, the following 
assumptions will be considered: 

1) Reference vector, [ , ]d d dθ θ θ
•

= , is defined such that 

1|| ||dθ θ<
ii

 and 0|| ||dθ θ< ; where, 0θ  and 1θ  are known 
positive constants. Note that we need to determine the 
sign of ( )g x  in order to design the controller. The sign of 
x  must be constant over all domain. ψ  is defined to 
determine the sign of ( )g x  and its value is chosen by 
designer. Also, qu , du  are considered as the inputs, and 
defined as follows: 

,  q d cu u uψ ψ= =  (11) 

where cu  is control signal generated by control system. 
Equation (12) can be obtained from (10) and (11). 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 5, Vol. 2, No. 4, Dec. 2010 

21 

3 5 2 3 5 2

1 1 1 1
( ) ( ) ( )q d c c

D D x D D x
u u u g x u

D D D D
ψ− = − =  (12)   

2) It is assumed that ( )g x  is a continuous function and its 
sign, is definite for x є Ω, where Ωx is controllability 
area. In our proposed method, ψ  is chosen such that

( ) 0g x > . Therefore, we obtain: 

3 2 2 2 2

1 1 1
( ) 0 0

0r r

D D x D x
D D D

N L N L
R R

ψ ψ

ω ω
ψ ψ

− > ⇒ − >

− > ⇒ >

 (13)  

Also, state space equation can be written as follows: 

1 2

2 ( ) ( ) c

x x

x f x g x u

•

•

=

= +
 (14)  

 
III. PROPOSED ADAPTIVE FUZZY SYSTEM 
In previous section, the equations of PM stepper 

motor were transformed to canonical form. In this 
section, the objective is applying a feedback controller,

( , )u u x θ= , based on type-2 fuzzy system. Also, we 
present an adjustment rules to regulate the vector of 
parameters such that the system output achieves the 
desirable output [15]. However, it is desired that the 
system output achieves to the desirable output as much as 
possible, it is much better that the system output 
converges toward the desirable output asymptotically. In 
specific cases, it is assumed that there is an accessible set 
of fuzzy if-then rules which describes the input-output 
behavior of ( )f x  and ( )g x . These rules can be rewritten 
as a form of interval type-2 fuzzy rules [15] as follows: 

1 1if is and...and is then ( ) isr r r
n nx F x F f X C

− − −

 (15)  
which describe ( )f x  and  

1 1if is and...and is then ( ) iss s s
n nx G x G g X D

− − −

 (16)  
which describe ( )g x . If nonlinear functions, ( )f x  and

( )g x , are specified, then we can choose the control 
vector (u), to omit the nonlinear part and design a 
controller based on linear control theory. In specific 

cases, it is assumed that me y y= − , ( 1) T( , ,..., )ne e e e −=
i

,
T

1( ,..., )nK k k=  and K  is determined in such a way that 
all roots of the characteristic equation 

( 1)
1( ... )n n

ns k s k−+ + +  lie in the left-half S plane (left 
hand side of imaginary axis). Then, we can select the 
control rules as follows:  

 ( )1 [ ( ) ]
( )

n T
mu f x y k e

g x
∗ = − + +  (17) 

The closed-loop system dynamic is obtained by 
substituting (17) into (14), as: 
 ( ) ( 1)

1 ... 0n n
ne k e k e−+ + + =  (18) 

If the value of K is selected properly, the 
lim ( ) 0t e t→∞ → . It means that the system output 

converges to the desirable output, asymptotically. 
Equation (17) which is related to ideal controller cannot 
be used if ( )f x  and ( )g x  are unknown. Under these 
circumstances, only fuzzy if-then rules can be used to 
describe input-output behavior of ( )f x  and ( )g x  
(Equations (15), (16)). Therefore, a reasonable idea is to 

replace ( )g x  and ( )f x  by fuzzy functions, 
^
( )g x  and

^
( )f x , which have been obtained from equations (15) and 

(16), respectively. Equations (15) and (16) just provide 
approximate information about ( )f x  and ( )g x functions.  

Therefore, the fuzzy functions, 
^
( )g x  and 

^
( )f x , are 

not accurate enough to estimate ( )f x  and ( )g x . To 
improve the accuracy, it is recommended to release some 
parameters which change online during the operation in 
such a way that approximation accuracy improves after a 
period of time. Assume that gM

g Rθ ∈  and fM
f Rθ ∈   

are free parameters in 
^
( )g x  and 

^
( )f x  functions, 

respectively. Hence, we have 
^ ^

( ) ( , )f x f x θ=  and
^ ^
( ) ( , )g x g x θ= . In equation (17), by substituting and

( )f x  and ( )g x  with 
^

( , )f x θ  and 
^
( , )g x θ , the fuzzy 

controller can be presented as: 

 
^

( )
^
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( , )

n T
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g X
θ

θ
= = − + +  (19) 

This type-2 fuzzy controller is called “certainty 

equivalent” [20]. After modeling 
^

( , )f x θ  and 
^
( , )g x θ  

using type-2 fuzzy system (the details of which can be 
found in [15]), and defining parameters such as: 

1 2, , , , , , , ,g fQ P bγ γ ω θ θ∗ ∗Λ  [20, section 23.2.3] and 
considering positive definite Lyapunov function as 
equation (20), 

* *
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Voltage-time derivative (V
i

) through closed-loop path 
(6) is obtained as follows:  

1
1

2
1
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2
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 (21)   

To minimize tracking error (e), adaptation rules must be 

chosen such that V
•

 becomes negative definite. 1
2

Te Pe  

is a negative term and we are able to choose fuzzy 
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systems in such a way that minimum approximation error 
(w) becomes small. Therefore, a good strategy is to select 
the adjustment rule such that the last two terms of 
equation (21) become zero. Hence, the adaption rules can 
be written as follows:  

1 ( ( ) ( ))
2

T
f l re pb X X

γ
θ ξ ξ
• −

= +  (22) 

2 ( ( ) ( ))
2

T
g l r le pb X X u

γ
θ η η
• −

= +  (23)  

Effective quantities in above equations have been 
presented in [13]. Moreover, indirect adaptive type-2 
fuzzy control system has been shown in Figure 1.  

 

 
 

Figure 1.  Indirect adaptive type-2 fuzzy control system 
 

IV. SIMULATION RESULTS 
In this section, we apply adaptive-fuzzy tracking 

control to canonical equation which obtained from 
section 2. Also, we compare the performance of type-1 
and type-2 fuzzy systems in rotor angle tracking control. 
For this purpose, we need to use (14) in system block of 
block-diagram which has been shown in Figure 1. For the 
purpose of simulation, we use the following values for 
the system parameters, obtained from [14]:  

2

10 ,  0.0011 H, 0,  0.001 Nm.sec/rad

=0.0000057 Kgm ,  50,  0.113 Nm/A
D

m

R L K

J Nr K

β= Ω = = =

= =
 

It must be noted that the friction torque has not been 
considered in (1). The purpose of control process is to 
have the rotor angular position follow the desirable path 
shown in Figure 2 with minimum error.  

 
 

Figure 2. Desirable path for rotor angular position 
 

To show the efficiency of proposed controller, in 
addition to certain model of the system, the experiments 
have been implemented in the presence of uncertainty. 
Moreover, controller parameters are the same as 
presented in [18] (see section 23.3). The membership 

functions for ,θ θ
i

, have been shown in Figure 3. These 
type-2 fuzzy membership functions are triangular. For 
more information about type-2 fuzzy systems, see [15, 
16].  

 
 

Figure 3. Type-2 fuzzy membership functions 
 

 
Figure 4. Type-1 Fuzzy Control (red), Type-2 Fuzzy Control (Blue) 

 
Tracking performance for type-1 and type-2 fuzzy 

system, under certain model condition, is shown in Figure 
4. It must be noted that type-1 fuzzy modeling is 
performed according to [20]. Also, model parameters are 
constant in both type-1 and type-2 fuzzy systems during 
simulation process.  

 

 
Figure 5. Tracing and robust performance  
with uncertain model (Uncertainty on J),  

Type-1 Fuzzy Control (Red), Type-2 Fuzzy Control (Blue) 
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Figure 6. Tracing and robust performance  
with uncertain model (uncertainty on beta),  

Type-1 Fuzzy Control (Red), Type-2 Fuzzy Control (Blue) 
 

It is observed from Figure 4 that the proposed type-2 
fuzzy controller reaches to the desirable output faster than 
another controller. As shown in Figure 4, time constant of 
type-1 and proposed type-2 fuzzy controllers are 0.029 
and 0.017, respectively. In addition, simulation results 
with the presence of system parameters uncertainty have 
been shown in Figures 5 and 6. It must be noted that 
uncertainty has been applied to rotor and load inertia (J) 
and viscous friction coefficient ( β ), separately. Also, a 
random noise with normal distribution around zero point 
has been applied to J and β  in scale of 957 10−×  and

410− , respectively.  
In Figures 5 and 6, uncertainty is applied to  J  and, 

respectively and tracking performance is compared for 
both adaptive type-1 and type-2 fuzzy controllers. It is 
obvious that proposed adaptive type-2 fuzzy controller 
has better performance in tracking control and also faster 
response rather than adaptive type-1 fuzzy controller. 
Moreover, proposed type-2 fuzzy controller is more 
robust against changes of the model. The reason is type-2 
fuzzy modeling. Therefore, type-2 fuzzy logic systems 
are more robust against uncertainties.  
 

V. CONCLUSIONS 
According to simulation results and figures in 

previous section, it was clear that proposed adaptive type-
2 fuzzy controller has a better tracking control and more 
robust response in comparison with type-1 fuzzy 
controller in the presence of both uncertainties and 
certainties because, type-2 fuzzy logic systems have 
better performance in the presence of system parameters 
uncertainties. In fact, using of indefinite (uncertain) 
membership functions and type-2 fuzzy methods to 
model nonlinear and indefinite functions, results in 
handling uncertainties much better than before. 
Therefore, the effect of uncertainties becomes minimum. 
Finally, it was shown that adaptive type-2 fuzzy 
controller provides more robust performance around 
operating point and the simulation results verified the 
main objective of the proposed controller which was 
accurate angular position control. 

APPENDIX 
 
Design of Indirect Adaptive Controller Based on 
Interval Type-2 Fuzzy System 

Assume that there is a nonlinear system which can be 
presented with nth order differential equations as follows: 

( ) ( 1) ( 1)( , ,... ) ( , ,... )n n nx f x x x g x x x u− −= +
i i

 (23)  
 y x=  (24) 
where f  and g  are uncertain, unknown, and nonlinear 
functions. ,u R y R∈ ∈  are input and output of the 

process, respectively and T
1( ,..., ) n

nX x x R= ∈  is a 
measurable state vector of the system. If ( ) 0g x ≠ , it can 
be concluded that (23) is controllable. Here, the objective 
is to design a type-2 fuzzy feedback controller and 
present an adaptive rule to tune the parameter vector (θ ) 
such that the system output ( y ) reaches to desirable 
output ( my ) as much as possible.  

Due to design an indirect adaptive fuzzy controller, it 
is assumed that there is enough knowledge about control 
systems. Also, it is assumed that there is an accessible set 
of fuzzy if-then rules which can describe the input-output 
behavior of ( ), ( )g x f x . These rules can be written as 
interval type-2 fuzzy rules as follows: 

^

1 1If is and...and is then isr r r
n nx F x F f E

∼

 (25) 
^

1 1If is and...and is then iss s s
n nx G x G g H

∼

 (26) 
1,2,,..., , 1,2,...,g fs M r M= =  which describe ( )f x  and

( )g x , respectively. If nonlinear functions,  ( )f x  and
( )g x , are specified, then we can choose the control 

vector ( u ) to omit the nonlinear part and design a 
controller based on linear control theory.  

In a specific case, it is assumed that 
( 1) T, ( , ,..., )n

me y y e e e e −= − =
i

 and T
1( ,..., )nK k k=  which 

K is determined in such a way that all roots of 
characteristic equation (characteristic polynomial) lie in 
the left-half S plane (left hand side of imaginary axis). 
Then, we can select the control rules as follows:  

1 [ ( ) ( ) ]
( )

T
m eu f x y n K

g x
∗ = − + +  (27)       

The closed-loop system dynamic is obtained by 
substituting (27) into (23), as: 

( ) ( 1)
1 ... 0n n

ne k e k e−+ + + =  (28) 
 If the value of K is selected properly, then 
lim ( ) 0t e t→∞ → . It means that the system’s output 
converges to the desirable output, asymptotically. 
Equation (27) which is related to ideal controller cannot 
be used if ( )f x  and ( )g x  are unknown. Under these 
circumstances, only fuzzy if-then rules can be used to 
describe input-output behavior of ( )f x  and ( )g x  
(Equations (25) and (26)). Therefore, a reasonable idea is 
to replace ( )f x  and ( )g x  in (27) by fuzzy functions, 
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^
( )f x  and 

^
( )g x , which have been obtained from (3) and 

(26), respectively. Equations (25) and (26) just provide 
approximate information about ( )f x  and ( )g x  

functions. Therefore, the fuzzy functions,  
^

( )f x  and 
^
( )g x , are not accurate enough to estimate ( )f x  and 
( )g x . To improve the accuracy, it is recommended to 

release some parameters which change online during the 
operation; in such a way that approximation accuracy 
improves after a period of time. Assume that gM

g Rθ ∈

and fM
f Rθ ∈  are free parameters in ( )f x  and ( )g x  

functions, respectively. Hence, we have 
^ ^

( ) ( , )f x f x θ=  

and 
^ ^
( ) ( , )g x g x θ= . In equation (27), by substituting 

^
( )g x  and 

^
( )f x  with 

^
( , )g x θ  and 

^
( , )f x θ , the fuzzy 

controller can be presented as:  
^

( )
^

1 [ ( , ) ]
( , )

n T
I mu u f X y k e

g X
θ

θ
= = − + +  (29) 

This type-2 fuzzy controller is called “certainty 
equivalent”. Now consider interval type-2 fuzzy rules 
base with m rules as: 

1 1If is and...and is then is , 1,...,i i r
n nx F x F y G i m=

∼

 (30)        
With considering product t-norm for combination of 
primary sets and after applying single fuzzy output, 
according to primary rules of fuzzy rules base which are 
related to designed fuzzy system, firing level is defined 
as:  

1

( ) , 1,...,i

j

n
i

j
Fj

F x i mμ
=

= =∏ ∼  (31)                

Because of applying type-2 fuzzy membership 
functions in fuzzy rules base, after applying single fuzzy 
input,  iF  will be an interval type-1 fuzzy set. Then, (31) 
can be updated as follows:  

( ) [ ( ), ( )]ii iF x f x f x
−

−
=  (32) 

where, ( )if x
−

 are ( )if x
−

 defined as:  

1

( ) ( )
i

j

n
i

j
j F

f x xμ
−

− =

=∏
∼

 (33) 

1

( ) ( )
i

j

n
i

j
j F

f x xμ
−

−=

=∏
∼

 (34) 

( )i

j
j

F
xμ

−
∼  and  ( )i

j
j

F
xμ

−

∼  are the lower and upper 

bounding membership functions of ( )i

j
j

F
xμ∼ ,  

respectively.  

The next step is the calculation of firing level 
corresponding to each rule. With considering product t-
norm to calculate logic implication (entailment) of each 
rule, firing level corresponding to each rule will be the 

product of iF  and iG
∼

. Since the obtained output of each 
rule is a type-2 fuzzy set before its firing, it must be 
transformed to a type-1 fuzzy set before deffuzification. 
In this paper, we use center-of-set (cos) type-reducer 
strategy [26] to obtain inference engine mapping from 
type-2 fuzzy rules base during the design of proposed 
controller.  

The center-of-set type-reducer method acts such that 
  in ith rules is replaced by its corresponding centroid 
which is a type-1 fuzzy set and finally, to compute 
inference engine mapping, it calculates a mean weight 
from these centroids where the weight corresponding to 

the centroid of ith rules will be  iF . Therefore,  iw  that 

is corresponding to the centroid iG
∼

, will be obtained as 
follows: 

1

( ) ( ) , 1, 2,...,i

j

n
i i

j
Fj

w F x x i mμ
=

= = =∏ ∼  (35) 

If we show the centroid of iG
∼

 by iY  ( iY =
iG

C ∼ ), the 

inference engine mapping for the rules base of (30) will 
be as [27]: 

1 1

cos

1 1

1( ) ... ... [ , ] :

sup ( ) sup ( ) , 1,...,

m m

i

l rm m
i i iy y f f

i i
t t

G

Y X Y Y st
f y f

y p Y p C i m
= =

= =

∈ = =

∫ ∫ ∫ ∫
∑ ∑

∼

 (36)          

Also, the inference engine mapping to approximate ( )f x  
and ( )g x  is obtained from (25), (26) as: 

1 1

^ ^ ^

1 1

1( ) ... ... [ , ] :

sup ( ) sup ( ), 1,...,

f f
M Mf f

i

l rM M
i i iy fy f

i i
i i

f
E

f X F F st

f y f

y p Y p C i M
= =

= =

∈ = =

∫ ∫ ∫ ∫
∑ ∑
∼

(37) 

1 1

^ ^ ^

1 1

1( ) ... ... [ , ] :

sup ( ) sup ( ), 1,...,

g g
M Mgg

i

l rM M
i i iy g gy

i i
i i

g
H

g X G G st

g y g

y p Y p C i M
= =

= =

∈ = =

∫ ∫ ∫ ∫
∑ ∑

∼

 (38) 

Above intervals must be calculated by Kernik-Mendel 
(KM) algorithm [38]. Now, assume that ( 1,..., )i

fy i M=   

and ( 1,..., )gi M=  are free parameters gathered in
fM

f Rθ ∈  and gM
g Rθ ∈ , respectively. Now, we can 

rewrite (37) and (38) as: 
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1 1

^

1 1

( , ) ( )

1... ...
f f

M Mf f
f f

T
f f

M M
i i if f

f
i i

f X X

f fθ θ

θ θ ξ

θ
= =

= =

∫ ∫ ∫ ∫
∑ ∑

 (39) 

1 1

^

1 1

( , ) ( )

1... ...
g g

M Mg g
g g

T
g g

M M
i i ig g

g
i i

g X X

g gθ θ

θ θ μ

θ
= =

= =

∫ ∫ ∫ ∫
∑ ∑

 (40) 

where ( )Xξ  and ( )Xμ  are fM  and gM  dimensional 
vectors, respectively and their ith elements are calculated 
as: 

1

( ) 1,....,
f

i
i

fM
k

k

fx i M

f

ξ

=

= =

∑
 (41)                                                           

1

( ) 1,....,
g

i
i

gM
k

k

gx i M

g

η

=

= =

∑
 (42)                                                           

After above calculations, two interval type-1 fuzzy 

sets, 
^ ^ ^
( , ) [ , ]l rgg X G Gθ =  and 

^ ^ ^
( , ) [ , ]l rff X F Fθ = , are 

obtained. Since f  and g  are interval type-2 fuzzy sets, 
defuzzification stage [27] will be as: 

^ ^
( , ) , ( , )

2 2
l r l r

f g
F F G G

f X g Xθ θ
− − − −
+ +

= =  (43)                      

According to [27],  
^ ^ ^ ^

, , ,l r l rF F G G  can be written as: 
^ ^

( ) , ( )T T
l rf l f rF X F Xθ ξ θ ξ= =  (44) 

^ ^
( ) , ( )T T

l rg l g rG X G Xθ η θ η= =  (45) 

where ( )l Xξ  and ( )r Xξ  are fM  dimensional vectors 
whose ith elements are obtained from: 

1 1

( ) , ( )
f f

i i
i il r
l rM M

j j
rl

j j

f f
X X

f f

ξ ξ

= =

= =

∑ ∑
 (46) 

Similarly,  ( )r Xη  and ( )l Xη  are gM  dimensional 
vectors whose ith elements are calculated from: 

1 1

( ) , ( )
g g

i i
i il r
l rM M

j j
rl

j j

g g
X X

g g

η η

= =

= =

∑ ∑
 (47) 

The following equations are obtained by substituting 
(44) and (45) into (43): 

^ 1( , ) ( ( ) ( ))
2

T
f f l rf X X Xθ θ ξ ξ= +  (48) 

^ 1( , ) ( ( ) ( ))
2

T
g g l rg X X Xθ θ η η= +  (49) 

By defining parameters and considering positive definite 

Lyapunov function as (50), voltage-time derivative (V
i

) 
through closed-loop path (28) is obtained as follows: 

1

2

1 1 ( ) ( ) ...
2 2

1 ( ) ( )
2

T T
f f f f

T
g g g g

V e Pe θ θ θ θ
γ

θ θ θ θ
γ

∗ ∗

∗ ∗

= + − − +

− −
 (50) 

1
1

1
2

1 ...
2

1 1( ) [ ( ( ) ( ))]
2

1 1( ) [ ( ( ) ( )) ]
2

T T

T T
f f f l l

T T
g g g l l I

V e Pe e Pbw

e Pb X X

e Pb X X u

θ θ θ γ ξ ξ
γ

θ θ θ γ η η
γ

∗

∗

= − +

+ − + + +

− + +

i

i

i

 (51) 

To minimize tracking error (e), adaptation rules must 

be chosen such that V
i

 becomes negative definite.  
1
2

Te Pe  is a negative term and we are able to choose 

fuzzy systems in such a way that minimum 
approximation error (w) becomes small. Therefore, a 
good strategy is to select the adjustment rule such that the 
last two terms of (51) become zero. Hence, the adaption 
rules can be written as follows:  

1 ( ( ) ( ))
2

T
f l re pb X X

γ
θ ξ ξ
• −

= +  (52) 

2 ( ( ) ( ))
2

T
g l r Ie pb X X u

γ
θ η η
• −

= +  (53) 

Indirect adaptive type-2 fuzzy control system has been 
shown in Figure 1, briefly. 
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