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Abstract- This paper presents an experimental 
investigation of the thermal performance of forced draft 
counter flow wet cooling tower with expanded wire mesh 
type packing. The packing used in this work is wire mesh 
with vertical [VOWMP] and horizontal [HOWMP] 
orientations. The packing is 1.25 m height and having a 
zigzag form.  From the experiments it is concluded that 
the vertical orientation of the packing enhance the 
performance of the cooling tower. 
 
Keywords: Cooling Tower, Packing, Wire Mesh, 
Characteristics. 
 

I. INTRODUCTION   
Cooling towers are widely used to remove heat from 

industrial processes and from refrigeration and air-
conditioning systems. Simultaneous heat and mass 
transfer process in every section of the cooling tower 
gives rise to complicated design equation. Experimental 
investigations of cooling towers should lead to better 
design. In counter flow cooling tower, hot water is 
sprayed into an air stream. Heat and mass are transferred 
and the water enthalpy decrease while that air increases. 
In order to increase the cooling rate, there interface area 
between air and water is increased by packed and 
fluidized beds. There are three types of packings in use 
namely, film, splash and film-grid packings. In the 
experimental studies, film packings were used with 
different orientations. Cooling tower packing plays an 
important role in increasing the effective contact area 
between air and water to promote better heat and mass 
transfer. 

The operation theory of cooling tower was suggested 
by Walker [1]; however, the generally accepted concepts 
of cooling tower performance were developed by Merkel 
[2]. A simplified Merkel theory has been used for the 
analysis of cooling tower performance. Simpson and 
Sherwood [3] studied the performance of forced draft 
cooling towers with a 1.05 m packing height consisted of 
wood slats.  Baker and Shyrock [4] presented the ways to 
minimize the error due to the assumptions of Merkel 
theory. Sutherland [5] has done a more rigorous analysis 
of a cooling tower model that relaxed Merkel’s 
restriction.   Nithiarasu and Seetharamu [6] have studied 

the experimental investigation of the performance of 
counter flows in packed bed mechanical cooling and 
showed that the  tower performance decrease with an 
increase in the L/G ratio. 

Goshayshi and Missenden [7] studied experimentally 
the mass transfer and the pressure drop characteristics of 
many type of packings, including smooth and rough 
surface corrugated packing in the atmospheric cooling 
tower. Milosarljevic and Heikkila [8] carried out 
experimental measurements on two pilot scale cooling 
towers in order to analyze the performance of different 
cooling tower filling materials. Kloppers and Kroger [9] 
have studied the loss coefficients for wet cooling tower 
fills. They tested trickle, splash and film type fills in a 
counter flow wet cooling tower. Khan et al. [10] and 
Kloppers and Kroger [11] have proposed and discussed 
several other mathematical models which correlated heat 
and mass transfer processes occurring in wet cooling 
towers. The main objective of this study is to investigate 
the thermal performances of a forced draft counter flow 
wet cooling tower filled with expanded wire mesh 
packing with different orientation (HOWMP, VOWMP) 
The principle of its performance is as follows: the air 
enters by the bottom of the tower and arrives by the top 
of that while crossing several times the expanded mesh, 
whereas the water is introduced at the top of the tower 
and flows along the expanded mesh. 

 
II. BASIC THEORY 

Heat transfer rate in the cooling tower is represented 
by the difference between the enthalpy of moist air at 
bulk water temperature and the enthalpy of the moist air. 
Merkel equation describes the heat transfer characteristics 
of filler at the design condition. It needs several 
assumptions:  
(i) effect of evaporation does not exist, 
(ii) thermal and mass diffusion coefficients of air/water 
system are the same.  

The analysis combines the sensible and latent heat 
transfer between air and water droplets in the tower. Total 
heat transfer rate per unit volume of filler (dV) from the 
interface to the air is the sum of sensible heat (dqS) and 
latent heat (dqL). 
ௌݍ݀ ൌ ܷீܸܽ݀൫ܶ" െ ܶ൯ (1) 
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௅ݍ݀ ൌ ݄௙௚݀݉ ൌ ݄௙௚ܭ ′ܸܽ݀൫ܹ" െܹ൯ (2)   
Energy conservation principle with the assumption 

principle with the assumption that the interface 
temperature is same as the air temperature derives 
equation (3).     
ݐ௣௪݀ܿܮ ൌ ′ሺ݄ܸ݀ܽܭ െ ݄ሻ (3)  
Integration of equation (3) results in equation (4).     
ܷܰܶ ൌ ܮ/ܸܽܭ ൌ ׬ ܿ௖௪݀ݐ/ሺ݄′ െ ݄ሻ௧భ

௧మ
 (4)                                       

Left hand side of the equation (4) is a dimensionless 
parameter called NTU (number of transfer unit) which is 
the characteristic value of the fill and represents the heat 
transfer capacity, that is a function of air and water 
temperature, size of the tower and shape of the fill. The 
temperature difference between the water entering and 
leaving the cooling tower is the range (R).The difference 
between the leaving water temperature and the entering 
air wet-bulb temperature is the approach (A) of the 
cooling tower. Cooling tower effectiveness is the ratio of 
range to the ideal range. 
ߝ ൌ ሺݐ௪ଵ െ ௪ଵݐ௪ଶሻ/ሺݐ െ   ௪௕ଵሻ (5)ݐ

Liquid /Gas (L/G) ratio, of a cooling tower is the ratio 
between water and the air mass flow rate. Against the 
design values, seasonal variation requires adjustment and 
tuning of water and air flow rates to get the best cooling 
tower effectiveness. The heat removal from water must 
be equal to the heat absorbed by the surrounding air. 

 
 
 

ሺܮ ଵܶ െ ଶܶሻ ൌ ሺ݄ଶܩ െ ݄ଵሻ (6)  
ܩ/ܮ ൌ ሺ݄ଶ െ ݄ଵሻ/ሺ ଵܶ െ ଶܶሻ  (7) 

 
III. EXPERIMENTAL SETUP           

Experimental water cooling tower model (Figure 1) 
comprises of tower of 0.3x0.3 cross sectional are and 1.5 
m working   height. Tower is fabricated out of M.S. sheet 
and angle frame and is provided with a Perspex sheet for 
visualization of tower operation.  

Hot water spray arrangement is provided at the top of 
tower packing to distribute water over the packings. Just 
below the packing a wind box is fitted with holes on all 
sides for uniform entry of air in the tower. Bottom end of 
the tower goes in the water measuring tank used for water 
flow rate measurement.  At the top end of the tower and 
in the wind box, psychrometers are fitted to measure 
entry and exit conditions of air in the tower. 

A 3 HP centrifugal blower is used to supply are to the 
cooling tower. Air piping is provided with control valve 
and orifice meter for air flow variation and measurement 
respectively.  Water line for cooling tower is connected 
through a rotameter for flow measurement and through 
water heating. By simultaneously varying water flow rate 
and heater input, various inlet water temperatures can be 
achieved. Water after passing through the tower packing 
is passed to a measuring tank for measuring outgoing 
water flow for measuring evaporation loss.  
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Figure 1.  Experimental setup of forced draft cooling tower 
 

1. Water heater, 2. Pump, 3. Flow meter, 4. Temp display and control unit, 5. Hot water thermometer, 6. Cold water thermometer,  
7. U-Tube manometer - air flow, 8. Psychometric gun, 9. Receiving tank, 10. Forced draft fan, 11. U-Tube manometer-cooling tower,  

12. Air inlet temperature. (TDB1 TWB1), 13. Air outlet temperature (TDB2 TWB2), 14. Psychometric gun temperature 
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Figure 4. Wire mesh dimension in one square inch area (top) and  
single mesh dimension (bottom) 

 
Figure 7 shows tower characteristics variations with 

the L/G ratio for different water flow rate. Cooling tower 
characteristics is very close for both orientations up to 
0.7L/G ratio. Over the 0.7L/G the performance of cooling 
tower was affected and cooling tower characteristics was 
drooped down drastically results in a decrease in 
performance with an increase in L/G ratio. The efficiency 
is plotted against the L/G ratio in Figure 8. It is seen that, 
due to the higher available potential lower water flow rate 
results in higher efficiencies. If the water flow rate is 
increased, the efficiency of   water cooling decreased for 
both orientations. 
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Figure 5. Outlet water temperature Vs L/G at 45 ˚C inlet water 
temperature 
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Figure 6. Approach Vs L/G at 45 ˚C inlet water temperature 
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Figure 7. Tower characteristics Vs L/G at 45 ˚C inlet water temperature 
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Figure. 8. Effectiveness Vs L/G at 45 ˚C inlet water temperature 
 

VII. CONCLUSIONS 
Performance of the cooling tower was analysed with 

expanded wire mesh packing with two different 
orientations. From the experimental results, the VOWMP 
is having better performance than HOWMP. It is due 
water passing over the flank angle of the wire mesh fills 
and fine water droplets formed in the VOWMP.  
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In VOWMP the water droplets are split into fine size 
compared with HOWMP. The air to water contact is 
more in VOWMP, so better heat transfer has been 
occurred and the cooling water outlet temperature is 
reduced compared with HOWMP. From the experimental 
study the efficiency of the cooling tower and cooling 
tower characteristics are higher in VOWMP due to higher 
contact area of water to air. Up to 0.8 L/G ratio because 
of better contact area between air to water the drop in 
performance of the cooling tower is less. Above 0.8 L/G 
ratio, the cooling tower performance was decreased 
drastically due to large quantity of water and lesser 
quantity of air. For that reason the contact area between 
air to water is in improper ratio. The L/G ratio up to 0.8, 
the VOWMP performance is good and over 0.8L/G the 
performance is dropdown. The present study can be 
extended with different pitch of the mesh and different 
size of the diamonds shape. 
 

NOMENCLATURES 
a Area of water interface per unit  volume (m2/m3) 

Cp Specific heat (kJ/kg.˚C) 
L Mass flow rate of water (kg/s) 
G Mass flow rate of air (kg/s) 
H Enthalpy (kJ/kg) 
M Mass (kg) 
Ka Combined heat and mass transfer coefficient (kJ/m2.s) 
Av Surface area of water droplet per unit volume of            
the tower (m2/m3) 
K Overall mass transfer coefficient (kg/s.m2) 
Q Heat transfer rate (kJ/s) 
U Overall heat transfer coefficient (kJ/m2.s.˚C) 
V Cooling tower volume (m3) 
T Water temperature (˚C) 
W Absolute humidity 

 
SUPERSCRIPTS AND SUBSCRIPTS 

’ Air bulk water temperature 
’’ Interface between water and air 
A Air 
S Sensible heat 
L Latent heat 
W Water 
Wb Wet bulb temperature 
1, 2 Inlet and outlet of cooling tower 
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