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Abstract- The technology of dense wavelength-division 
multiplexing (DWDM) has recently resulted in a 
considerable increase in the transmission capacity of 
fiber-optic communication systems up to several terabits 
per second. The further improvement of the transmission 
capacity of such systems can be achieved through the 
expansion of the spectral range of WDM transmission 
toward the short-wavelength region. Therefore this 
present paper has proposed and investigated the new 
trends and progress of fiber Raman amplification for 
dense wavelength division multiplexing photonic 
communication networks over wide range of the affecting 
parameters. As well as we have deeply studied the 
transmission distances and transmission bit rates within 
Raman amplification technique in forward pumping 
direction configuration through standard single-mode 
fiber using Shannon transmission technique to handle 
transmission bit rate and product per channel in this 
direction for upgrading network performance and 
efficiency to provide maximum amount of transmission 
data rate to the supported maximum number of users. 
 
Keywords: Photonic Networks, Raman Amplification, 
Forward Direction, Transmission Data Rate, DWDM. 

 
 

I. INTRODUCTION 
Optical amplifiers are key elements of any fiber-optic 

communication system. Even though modern optical 
fibers have losses below 0.2 dB/km, a repeated 
amplification of the transmitted signal to its original 
strength becomes necessary at long enough distances [1]. 
One solution for signal regeneration is the conversion of 
the optical signal into the electrical domain and 
subsequent re-conversion into a fresh optical signal. 
However, purely optical amplifiers are usually preferred. 
They simply amplify the electromagnetic field of the 
signal via stimulated emission or stimulated-scattering 
processes in a certain optical frequency range.  

The amplification process is essentially independent 
of the details of the spectral channel layout, modulation 
format or data rate of the transmission span [2], thus 
permitting the system operator to later re-configure these 

parameters without having to upgrade the amplifiers [3]. 
Multi-wavelength pumped Raman amplifiers (RAs) have 
attracted more and more attention in recent years [4]. In 
this type of amplification a widely used concept, for high 
capacity long distance wavelength division multiplexing 
(WDM) transmission systems was used. They have been 
already used in many ultra long-haul dense WDM 
(DWDM) transmission systems. It supports high bit rate 
data transmission over long fiber spans, due to its benefits 
such as proper gain and optical signal to noise ratio 
(OSNR). In addition, it can be used for increasing the 
bandwidth of Erbium doped fiber amplifiers (EDFAs) in 
hybrid systems.  

Another important feature of RAs is its gain 
bandwidth, which is determined by pump wavelength. 
Multi-wavelength pumping scheme is usually used to 
increase the gain flattening and bandwidth for high 
capacity WDM transmission systems. In backward-
pumped fiber Raman amplifiers, other noise sources, such 
as the relative intensity noise (RIN) transfer are 
minimized, because this scheme can suppress the related 
signal power fluctuation. OSNR of this excitation is 
tilted, and channels with longer wavelength have longer 
OSNR respect to the shorter wavelength channels [5, 6]. 

In the present study, we have integrated and deeply 
studied the fiber Raman amplification with the 
transmission media fibers, and pumped at any wavelength 
to provide wide gain bandwidth and improve optical 
signal to noise ratio of the transmitted optical signals in 
order to allow both ultra long transmission bit rate 
distance and high capacity in DWDM photonic networks 
in forward direction configuration over wide range of the 
affecting parameters. 

 
II. SCHEMATIC VIEW OF DWDM PHOTONIC 

NETWORKS 
Figure 1 shows multichannel DWDM transmission 

system when various 10 Gbit/sec signals are fed to optical 
transmission modules [7]. An optical DWDM coupler 
(multiplexer) then bunches these optical signals together 
on one fiber and forwards them as a multiplexed signal to 
an optical fiber amplifier (OFA). A DWDM system can 
be described as a parallel set of optical channels, each 
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where k is the Boltzmann’s constant (1.38x10-23 J/K), α is 
the total attenuation coefficient in dB/km, and L is the 
fiber link length in km. The total pulse broadening Δτ due 
to total dispersion coefficient can be determined by: 

t SD Lτ λΔ = Δ    [nsec] (13) 
The allowable signal bandwidth in standard single 

mode fiber can be expressed as [16]: 

 .
0.44. sigBW

Lτ
=
Δ

   [GHz] (14) 

As well as the Shannon transmission bit rate can be 
expressed as the following formula: 

( ). 103.3219 . log 1Sh sigB BW OSNR= +    [Gbit/sec] (15) 
Moreover the Shannon bit rate-distance product can be 
expressed as a function of Shannon transmission bit rate 
and fiber link length as the following expression: 

.Sh ShP B L=    [Gbit.km/sec] (16) 

The BER essentially specifies the average probability 
of incorrect bit identification. In general, the higher the 
received SNR, the lower the BER probability will be. For 
most PIN receivers, the noise is generally thermally 
limited, which independent of signal current. The BER is 
related to the OSNR as follows [16]: 

0.5 1
2 2
OSNRBER erf

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (17) 

where erf is the error function, and OSNR is the signal to 
noise ratio in absolute value. 
 
IV. SIMULATION RESULTS AND DISCUSSIONS 

In the analysis of our results, we have investigated the 
new trends of fiber Raman amplification in DWDM 
photonic communication networks under the set of 
affecting operating parameters are shown in Table 1. 

 
Table 1. Suggested operating parameters in DWDM photonic networks 

 

Operating Parameter Symbol Value 
Operating signal wavelength λS 1.45-1.65 μm 
Ambient temperature T 300-340 K 
Room temperature T0 300 K 
Channel spacing ΔλS 0.1-0.8 nm 
Pumping wavelength λP 1.4-1.55 μm 
Signal attenuation αS 0.2-0.5 dB/km 
Pump attenuation αp 0.35 dB/km 
Pumping power PP 0.25-0.5 Watt/pump 
Transmitted signal power PS=PT 2-20 mWatt 
Effective area Aeff 85 μm2

Raman gain coefficient g0 0.7 Watt-1.km-1 
Relative refractive-index difference Δn 0.003-0.009 
Fiber link length L 100-1000 km 
Number of transmitted channels Nch 100-1000 channel 
On-Off Raman gain GA 5-50 dB 
Noise figure NF 2-5 dB 

 
Based on the set of Figures 2-19, the following facts 

and obtained features are assured as follows: 
i) Figures 2 and 3 have assured that as fiber link length 
increases, these results in decreasing in pumping power 
that leads to increase in signal power. 
ii) Figure 4 has demonstrated that as the fiber link 
length increases, this leads to increase in noise figure. As 

well as at signal/pump attenuation equal presents higher 
noise figure than signal/pump attenuation varying. 
iii) Figure 5 has proved that as on-off Raman gain 
increases, this leads to decrease in noise figure at constant 
fiber link length. Moreover as fiber link length increases, 
this results in increasing in noise figure. 

 

 
Fiber link length, L, km 

 

Figure 2. Variations of the pumping power against the fiber link length at the assumed set of parameters 
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Fiber link length, L, km 

 

Figure 3. Variations of the signal power against the fiber link length at the assumed set of parameters 
 
 

 
Fiber link length, L, km 

 

Figure 4. Variations of noise figure against the fiber link length at the assumed set of parameters 
 
 

 
On-Off Raman gain, GA, dB 

 

Figure 5. Variations of the noise figure with the on-off Raman gain at the assumed set of parameters 
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Ambient temperature, T, K 

 

Figure 6. Variations of the optical signal to noise ratio versus ambient temperature at the assumed set of parameters 
 
 

 
Signal attenuation,α, dB/km 

 

Figure 7. Variations of the optical signal to noise ratio versus signal attenuation at the assumed set of parameters 
 
 

 
Noise figure, NF, dB 

 

Figure 8. Variations of the optical signal to noise ratio versus noise figure at the assumed set of parameters 
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Transmitted signal power, PT, mWatt 

 

Figure 9. Variations of the optical signal to noise ratio against transmitted signal power at the assumed set of parameters 
 
 

 
Channel spacing, ΔλS, nm 

 

Figure 10. Variations of the signal bandwidth against channel spacing at the assumed set of parameters 
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Figure 11. Variations of the signal bandwidth against channel spacing at the assumed set of parameters 
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Number of transmitted channels, Nch 

 

Figure 12. Variations of optical signal to noise ratio against number of transmitted channels at the assumed set of parameters 
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Figure 13. Variations of optical signal to noise ratio against number of transmitted channels at the assumed set of parameters 
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Figure 14. Variations of Shannon bit rate against number of transmitted channels at the assumed set of parameters 
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Number of transmitted channels, Nch 

 

Figure 15. Variations of Shannon bit rate against number of transmitted channels at the assumed set of parameters 
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Figure 16. Variations of Shannon bit rate-distance product versus fiber link length at the assumed set of parameters 
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Figure 17. Variations of Shannon bit rate-distance product versus fiber link length at the assumed set of parameters 
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Fiber link length, L, km 

 

Figure 18. Variations of received bit error rate against fiber link length at the assumed set of parameters 
 

 
Fiber link length, L, km 

 

Figure 19. Variations of received bit error rate against fiber link length at the assumed set of parameters 
 

 
iv) In the series of Figures 6-9 have indicated that as 
ambient temperature, signal attenuation, and noise figure 
increase, this result in decreasing optical signal to noise 
ratio at constant fiber link length. But as both fiber link 
length and transmitted signal power increase, this leads to 
increase in optical signal to noise ratio.  
v) As shown in Figures 10 and 11 have assured that as 
channel spacing increases, these results in decreasing in 
signal bandwidth at constant fiber link length. With 
forward Raman amplification technique presents both 
higher fiber link length and signal bandwidth than 
without amplification case. 
vi) As shown in Figures 12-15 have demonstrated that 
as number of transmitted channels increases, this result in 
decreasing in both optical signal to noise ratio and 
Shannon bit rate at constant fiber link length. With 
forward Raman amplification technique presents higher 
fiber link length, optical signal to noise ratio, and 
Shannon bit rate than without amplification case. 
vii) As shown in Figures 16-19 have assured that as 
fiber link length increases, these results in increasing in 
both Shannon bit rate-distance product and bit error rate 

at constant number of transmitted channels. With forward 
Raman amplification technique presents higher Shannon 
bit rate-distance product than and lower bit error rate 
without amplification case. 
 

V. CONCLUSIONS 
In a summary, we have been investigated and 

modeled forward Raman gain amplification technique for 
DWDM photonic networks over wide range of the 
affecting parameters. It is observed that the increased 
fiber link length, the increased of both signal power and 
noise figure, and the decreased pumping power. As well 
as the increased on-off Raman gain, the decreased noise 
figure. Moreover, the decreased ambient temperature, 
signal attenuation, and noise figure, the increased optical 
signal to noise ratio (OSNR). The increased of both 
transmitted signal power, and fiber link length, the 
increased OSNR. With forward Raman amplification 
presents higher fiber link length, signal bandwidth, 
Shannon bit rate, OSNR, Shannon bit rate-distance 
product and the lower bit error rate (BER) without 
amplification case. 
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