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Abstract- In this paper an improved Harmony Search 
(HS) is applied to solve the Economic Dispatch (ED) 
problem with nonconvex cost functions. The proposed 
approach modifies the improvement of Novel Global 
Harmony Search (NGHS) reported in the literature where 
the resulting approach is known as NGHS-II. The 
practical ED problem have nonconvex cost functions with 
equality and inequality constraints that makes the 
problem of finding the global optimum difficult using any 
optimization approaches. In this paper, the NGHS-II is 
deal with the equality and inequality constraints in the ED 
problem. To validate the results obtained by proposed 
NGHS-II, NGHS and other improved version of harmony 
search (IHS) are applied for comparison. Also, the results 
obtained by the NGHS-II are compared with the previous 
approaches reported in the literature. The results show 
that the proposed NGHS-II produces better solutions for 
all study systems. 

 
Keywords: Harmony Search, Economic Dispatch, 
Constrained Optimization, Heuristic Algorithm.  

 
I. INTRODUCTION 

In the traditional ED problem, the cost function for 
each generator has been approximately represented by a 
single quadratic function and is solved using 
mathematical programming based on the optimization 
techniques such as lambda-iteration method, gradient 
method, dynamic programming method and etc [1]. 
However many mathematical assumptions-such as 
convex, quadratic, differentiable objective, linear 
objective and constraints are required to simplify the 
problem. 

The practical ED problem with ramp rate limits, 
prohibited operating zones, valve point effects, and multi 
fuel options is represented as a non-smooth or non-
convex optimization problem with equality and inequality 
constraints and this makes the problem of finding the 
global optimum difficult and cannot be solved by the 
traditional methods easily. 

Over the last decades there has been a growing 
interest in algorithms inspired from the observation of 
natural phenomenon. It has been shown by many 
researches that these algorithms are good replacement as 

tools to solve complex computational problems.  A 
considerable amount of work has been adopted by 
researches to solve a practical ED problem by 
considering different nonconvex cost functions using 
various heuristic approaches such as genetic algorithm 
(GA) [2]-[6], simulated annealing [7], artificial neural 
network [8]-[10], tabu search [11], evolutionary 
programming [12]-[16], PSO [17-21], ant colony 
optimization [22]-[23] and differential evolutionary  [24-
25]. 

In this paper, a new heuristic approach is proposed 
and applied to economic dispatch problem. The proposed 
approach is based on the improvement of Novel Global 
Harmony Search (NGHS) reported in [26]. Thus the 
proposed approach in this paper is called second Novel 
Global Harmony Search (NGHS-II). 

The proposed approach is applied on three test 
systems. Also, to show the effectiveness of the proposed 
approach, NGHS and another improvement of HS (IHS) 
proposed by Mahdavi [27] are applied on these systems. 
The results obtained by NGHS-II, not only are compared 
by NGHS and IHS but also are compared with those 
obtained by the previous approaches reported in the 
literature. To make a proper background, a brief 
description of HS, IHS and NGHS are given in the next 
section followed by the description of the proposed 
approach. 
  

II. OVERVIEW OF HS, IHS AND NGHS 
 
A. Harmony Search (HS) 

HS is based on natural musical performance a process 
that searches for a perfect state of harmony. The harmony 
in music is analogous to the optimization solution vector, 
and the musician’s improvisations are analogous to local 
and global search schemes in optimization techniques. 
The HS algorithm does not require initial values for the 
decision variables and uses a stochastic random search 
that is based on the harmony memory considering rate 
and the pitch adjusting rate. In general, the HS algorithm 
works as follows [28-29]: 
Step 1. Define the objective function, the decision 
variables. Input the system parameters and the boundaries 
of the decision variables. 
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The optimization problem can be defined as: 
 Minimize ( )f x  subject to iL i iUx x x≤ ≤  ( 1,2, , )i N= "
where xiL and xiU are the lower and upper bounds for 
decision variables.  

The HS algorithm parameters are specified in this 
step. They are the harmony memory size (HMS)  or the 
number of solution vectors in harmony memory, harmony 
memory considering rate (HMCR), distance bandwidth 
(bw), pitch adjusting rate (PAR), and the number of 
improvisations (K), or stopping criterion.  K is the same 
as the total number of function evaluations. 
Step 2. Initialize the harmony memory (HM). The 
harmony memory is a memory location where all the 
solution vectors (sets of decision variables) are stored. 
The initial harmony memory is randomly generated in the 
region [ , ]iL iUx x  ( 1,2, , )i N= " . This is done based on 
the following equation:  

rand() ( ) 1,2, ,j
i iL iU iLx x x x j HMS= + × − = "  (1) 

where rand ()  is a random from a uniform distribution of 
[0,1]. 
Step 3. Improvise a new harmony from the harmony 
memory. Generating a new harmony xi

new is called 
improvisation where it is based on 3 rules: memory 
consideration, pitch adjustment and random selection.  
First of all, a uniform random number r1 is generated in 
the range [0, 1]. If r1 is less than HMCR, the decision 
variable xi

new is generated by the memory consideration; 
otherwise, xi

new is obtained by a random selection. Then, 
each decision variable xi

new will undergo a pitch 
adjustment with a probability of PAR if it is produced by 
the memory consideration. The pitch adjustment rule is 
given as follows: 

new new
i ix x r bw= ± ×  (2) 

where r is a uniform random number between 0 and 1. 
Step 4. Update harmony memory. After a new harmony 
vector xnew is generated, the harmony memory will be 
updated. If the fitness of the improvised harmony vector 

1 2( , , , )new new new new
Nx x x x= "  is better than that of the 

worst harmony, the worst harmony in the HM will be 
replaced with xnew and become a new member of the HM. 
Step 5. Repeat steps 3-4 until the stopping criterion 
(maximum number of improvisations K) is met. 
 
B. The Improved Harmony Search (IHS) 

An improved harmony search algorithm (IHS) is 
proposed in [27], in which the key modifications are 
about PAR and bw. In the HS, PAR and bw are all 
constants, but the IHS updated them dynamically as 
follows: 

max min
min( ) ( )

PAR PAR
PAR k PAR k

K
−

= +  (3) 

min

max
max

ln
( ) exp( )

bw
bw

bw k bw k
K

⎛ ⎞
⎜ ⎟
⎝ ⎠=  (4) 

where k is current number of improvisations, and K is 
maximum number of improvisations. IHS employs a 
novel method for generating new solution vectors that 

enhances accuracy and convergence rate of harmony 
search. The IHS has been successfully applied to various 
engineering optimization problems. Numerical results 
reveal that the IHS can find better solutions compared to 
the HS. 
 
C. A Novel Global Harmony Search (NGHS) 

The NGHS proposed by Zou [26] is different with HS 
in three aspects. Mutation operator is added and it 
modifies the improvisation step of the HS such that the 
new harmony mimics the global best harmony in the HM. 
The differences are as follows: 
• Instead of HMCR and PAR a genetic mutation 
probability (pm) is considered in the NGHS. 
• The NGHS modifies the improvisation step of the HS, 
and it works as follows [26]: 
------------------------------------------------------------------- 
for 1:i N= do 
    best worst

i i istep x x= − %calculating the adaptive step  

    new best
i i ix x r step= ± ×  %position updating    (5) 

     if rand() mp≤  

       rand() ( )new
i iL iU iLx x x x= + × − %genetic mutation 

     end 
endfor 
------------------------------------------------------------------- 
where, “best” and “worst” are the indexes of the global 
best harmony and the worst harmony in HM, 
respectively. r and rand() are all uniformly generated 
random numbers in [0,1]. 

The reasonable design for stepi can guarantee that the 
algorithm has strong global search ability in the early 
stage of optimization, and has strong local search ability 
in the late stage of optimization. Dynamically adjusted 
stepi keeps a balance between the global search and the 
local search. 

The genetic mutation operation is carried out for the 
worst harmony of harmony memory after updating 
position to prevent the premature convergence of the 
NGHS. 
• After improvisation, the NGHS replaces the worst 
harmony xworst in HM with the new harmony xnew even if 
xnew is worse than xworst . 

.   
III. THE PROPOSED APPROACH: NGHS-II 
In NGHS, the original structure of harmony search is 

changed by excluding the HMCR parameter and 
including a mutation probability. By a careful 
consideration, we can find that the role of pm is the same 
as 1-HMCR. Therefore, in this paper HMCR is used to 
emphasize that the original structure of harmony search is 
held and the improvisation step becomes as following. 

In NGHS, new harmony is inclined to mimic the 
global best harmony in HM.  In NGHS-II, 1-HMCR 
determines the randomness of new harmony. Therefore 
large HMCR results in premature convergence. To 
maintain the diversity of HM, HMCR must be small. But 
small HMCR decreases convergence velocity, also results 
in producing new harmonies which are infeasible. 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 8, Vol. 3, No. 3, Sep. 2011 

27 

------------------------------------------------------------------- 
for 1:i N= do 
     if rand() HMCR≤  

         best worst
i i istep x x= − %calculating the adaptive step  

         new best
i i ix x r step= ± × %position updating      (6) 

         max( ,min( , ))new new
i iL iU ix x x x=  

     else 
         rand() ( )new

i iL iU iLx x x x= + × −  %genetic mutation 
     end 
endfor 
------------------------------------------------------------------- 

In this paper HMCR is adjusted close to one to 
produce feasible solutions and having a good 
exploitation.  After some evaluations, the algorithm may 
reach to a local solution and  the adaptive step (stepi) 
goes to zero. At this step the algorithm is stagnated. 
Therefore, to prevent the stagnation, we generate a few 
harmonies randomly and replace them by the worse 
harmonies in the HM. The number of new random 
harmonies depends on the problem and the size of the 
HM. The new random harmonies cause the adaptive step 
(stepi) is increased and the algorithm starts new 
exploration to find a better solution.  

Furthermore, after improvisation in the NGHS, the 
worst harmony xworst in HM will be replaced with the new 
harmony xnew even if xnew is worse than xworst. This 
replacement is not good and it makes the algorithm not to 
converge. Therefore, in this paper, the worst harmony 
xworst in HM will be replaced with the new harmony xnew if 
xnew  is better than xworst.   

In many improved versions of harmony search such 
as IHS, the number of parameters is increased which is 
not good. It should be note that in order to get the 
optimum point by heuristic algorithms, the parameters of 
the algorithm must be tuned for the problem at hand.  In 
NGHS the number of parameters is decreased, and 
NGHS-II does not add any parameters to NGHS. 
Therefore it can be used for any problem easily. 

 
IV. FORMULATION OF ECONOMIC DISPATCH 

PROBLEM 
For convenience in solving the ED problem, the unit 

generation output is usually assumed to be adjusted 
smoothly and instantaneously. Practically, the operating 
range of all online units is restricted by their ramp rate 
limits by forcing the units to operate continually between 
two adjacent specific operation zones. In addition, the 
prohibited operating zones, valve point effects and multi-
fuel options must be taken into account. The traditional 
and practical ED is explained below. 

 
A. Traditional ED Problem with Smooth Cost 
Functions  

In the traditional ED problem, the cost function for 
each generator has been approximately represented by a 
single quadratic function. The primary objective of the 
ED problem is to determine the optimal combination of 
power outputs of all generating units so that the required 

load demand at minimum operating cost is met while 
satisfying system equality and inequality constraints. 
Therefore, the ED problem can be described as a 
minimization problem with the following objective: 

2

1 1

min ( ) ( )
G GN N

i Gi i Gi i Gi i
i i

F F P a P b P c
= =

= = + +∑ ∑  (7) 

subject to 

1

GN

Gi load loss
i

P P P
=

= +∑  (8) 

min max for 1,2 ,Gi Gi Gi GP P P j N≤ ≤ = …  (9) 
where  F is the total generation cost ($/hr), Fi is the fuel-
cost function of generator i ($/hr), NG is the number of 
generators, PGi is the real power output of generator i  
(MW), and  ai, bi and  ci are the fuel-cost coefficients of 
generator  i, Pload  is the total load in the system (MW), 
Ploss is the network loss (MW) that can be calculated by 
the B-matrix loss formula, minGiP  and maxGiP  are the 
minimum and maximum power generation limits of 
generator i. 
 
B. Practical ED Problem with Non-smooth Cost 
Functions  

As it is mentioned, a practical ED must take ramp rate 
limits, prohibited operating zones, valve point effects, 
and multi-fuel options into consideration to provide the 
completeness for the ED formulation. The resulting ED is 
a nonconvex optimization problem that has multiple 
minima, which makes the problem of finding the global 
optimum difficult: 
1) Generator Ramp Rate Limits. If the generator ramp 
rate limits are considered, the effective real power 
operating limits are modified as follows: 

0 0
min maxmax( , ) min( , )

1,2, ,
Gi Gi i Gi Gi Gi i

G

P P DR P P P UR

i N

− ≤ ≤ +

= "
 (10) 

where 0
GiP   is the previous operating point of generator i, 

iDR  and iUR  are the down and up ramp limits of the 
generator i. 
2) Prohibited Operating Zones. A generator with 
prohibited regions (zones) has discontinuous fuel-cost 
characteristics. The concept of prohibited operating zones 
is included as the following constraint in the ED: 

1

1
min

max

2,3, ,

1,2 ,

Gi

k
GiGi

Gi

LB
Gi Gi

U B LBk
Gi Gi PZi

UBk
Gi Gi PZi

GPZ

P P P

P P P P k N

P P P k N

j N

−

⎧ ≤ ≤
⎪⎪∈ ≤ ≤ =⎨
⎪

≤ ≤ =⎪⎩
=

"

…

  (11) 

where 
Gi

LBkP
 

and 
Gi

UBkP
 

are the lower and upper 
boundaries of prohibited operating zone  k of generator i  
in (MW), respectively; PZiN  is the number of prohibited 
operating zones of generator i; and  GPZN  is the number 
of generators with prohibited operating zones. The 
discontinuous fuel-cost characteristics of the generators 
by considering prohibited zones are shown in Figure 1.  
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Figure 1. Input-output curve with prohibited operating zones 

   
3) Valve-Point Effects. The generator with multi-valve 
steam turbines has very different input-output curve 
compared with the smooth cost function. As each steam 
valve starts to open, the valve point results in ripples as 
shown in Figure 2. To consider the valve-point effects, 
sinusoidal functions can be added to the quadratic cost 
functions as follows: 

2
( min( ) sin( ( ))i Gi i Gi i Gi i i i Gi GiF P a P b P c e f P P= + + + −  (12) 

where ei  and  fi  are the coefficients of generator 
reflecting valve-point effects. 
4) Multi-fuel options. A piecewise quadratic function is 
used to represent the input-output curve of a generator 
with multiple fuels. The piecewise quadratic function is 
described as (13) and the cost and the incremental cost 
functions are illustrated in Figure 3:  

, ,

2

min max

( )

if for 1,2 ,

1, 2, ,
Gi k Gi k

i Gi ik Gi ik Gi ik

Gi G

F

F P a P b P c

P P P j N

k N

= + +

≤ ≤ =

=

…

…

  (13) 

For a power plant with NG generators and NF fuel 
options for each unit, the cost function of the generator 
with valve-point loading is expressed as:  

, ,

2
( min

min max

( ) sin( ( ))

if for 1, 2 ,

1, 2, ,
Gi k Gi k

i Gi ik Gi ik Gi ik ik ik Gi Gi

Gi G

F

F P a P b P c e f P P

P P P j N

k N

= + + + −

≤ ≤ =

=

…

…

 (14) 

 

 
Figure 2.  Piecewise Input-output curve under valve-point loading 

 

 
Figure 3.  Piecewise quadratic and incremental cost functions of a 

generator 
 

V. STUDY SYSTEMS 
To assess the efficiency of the proposed approach, it 

has been applied to ED problem by considering three test 
systems having nonconvex solution spaces.  
1) The first study system. This study system consists of 
six generators with ramp rate limit and prohibited 
operating zones.  The input data for 6-generator system 
are given in [19] and the total demand is set as 1263 MW. 
All the generators are having ramp rate limits. The 
network losses are calculated by the B-matrix loss 
formula.  It was reported in [21] that the best generation 
cost reported until now is 15443.0925 $/h. 
2) The second study system. This study system consists of 
15 generators with ramp rate limit and prohibited 
operating zones. The input data of this system are given 
in [18] and has a total load of 2630 MW. Also, the 
network losses are calculated by B matrix loss formula. 
The main difference of the study systems 1 and 2 is that 
the system 2 has many local minima compared to system 
1. Thus, the ability of the proposed algorithms is 
investigated on a larger system.  The best generation cost 
reported until now is 32738.4177 $/h [21]. 
3) The third study system.  This study system consists of 
ten generators with multi-fuel options and valve-point 
effects [18]. The total demand for this system is set as 
2700 MW. It was reported in [18] that the global 
optimum solution found for the 10-generator system is 
624.1273. 
 

VI. IMPLEMENTATION AND SIMULATION 
The implementation of the NGHS-II is given below:  

For the study system 1 with six generators, the goal of the 
optimization is to find the best generation for the six 
generators. Therefore, each harmony is a d -dimensional 
vector in which 6=d . The HMS is selected to be 20. 
HMCR and evaluation number are set to be 0.9 and 1000, 
respectively.  

Each harmony in the population is evaluated using the 
objective function defined by Equation (7) subject to 
Equations (8)-(14) searching for the harmony associated 
with bestF .  

Max P2 P1 Min 

$/M
Incremental cost 

Fuel1 
Fuel 2 

Fuel 3 

Power 

Power output, MW 

- - - without valve- point effect 
         
            with valve- point effect 

Fu
el
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os

t, 
prohibited operating  zones 

power  output (MW) 

fu
el
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os

t (
$)

 

$
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To find the minimum cost, the NGHS, IHS and 
NGHS-II are run for 50 independent runs under different 
random seeds.  The results obtained by the algorithms are 
shown in Table 1, in the first three columns.  The other 
columns of the table show the results obtained by MPSO 
reported in [21], binary version of GA, PSO, a modified 
(new) version of PSO having local random search 
(NPSO-LRS) reported in [19] and a self-organizing 
hierarchical PSO (SOH_PSO) reported in [20]. This table 
shows that the NGHS-II is performing better than other 
algorithms in terms of the best generation schedule with 
minimum network loss in addition to minimum 
generation cost.   

The best-so-far of each run is recorded and averaged 
over 50 independent runs for the NGHS, IHS and NGHS-
II. To have a better clarity, the convergence 
characteristics in finding the minimum cost are given in 
Figure 4. This figure shows that the NGHS-II algorithm 
performs better than others. 

To investigate the ability of the NGHS-II in finding 
the solution and convergence characteristics of the 
algorithm, the same study is carried out on the second 
study system, which is a larger system. For this system, 
the evaluation number is set to be 12000 but other 
settings are the same as study system 1. 

The results obtained by the NGHS, IHS and NGHS-II 
are given in Table 2, in the first three columns. The other 
columns of the table show the results obtained by MPSO 
reported in [21], binary version of GA and PSO reported 
in [18] and SOH_PSO reported in [20]. The results 
obtained by all algorithms (listed in Table 2) reveals that 
the best found solution by NGHS-II is better than the 
other algorithms. In other words, it is clear that 
dimensionality is not the key factor and the NGHS-II still 
outperforms other approaches significantly. The 
convergence characteristics in finding the minimum cost 
are given in Figure 5. 

In the study system 3, the evaluation number is set to 
be 6000 but other settings are the same as previous study 
systems. The obtained result by NGHS-II shows that the 
global optimum solution for the 10-generator system is 
slightly better than those reported in the literature. The 
convergence characteristics in finding the minimum cost 
by NGHS, IHS and NGHS-II for the study system 3 are 
given in Figure 6.   

The obtained solution is given in Table 3. The last 
three columns of the table show the results obtained by 
MPSO reported in [21], an improved GA with multiplier 
updating (IGA_MU) and NPSO_LRS reported in [19]. 
 

 
 

Figure 4.  Convergence characteristics of NGHS-II, NGHS and IHS on 
the average best-so-far in finding the solution in study system 1 

 

 
 

Figure 5.  Convergence characteristics of NGHS-II, NGHS and IHS on 
the average best-so-far in finding the solution in study system 2 

 

 
 

Figure 6.  Convergence characteristics of NGHS-II, NGHS and IHS on 
the average best-so-far in finding the solution in study system 3 

 

Table 1. Comparison of simulation results of each method (6-generator system) 
 

SOH_PSO [20] NPSO-LRS [19] PSO [19] GA [19] MPSO [21] IHS NGHS NGHS-II unit 
438.21 446.9600 447.4970474.8066446.48690445.60 447.56 446.51 P1 
172.58 173.3944 173.3221178.6363168.6612172.57 172.3 176.05 P2 
257.42 262.3436 263.4745262.2089265.0000261.44 256.28 262.46 P3 
141.09 139.5120 139.0594134.2826139.4927141.23 135.3 139.79 P4 
179.37 164.7089 165.4761151.9039164.0036166.50 171.64 163.48 P5 
86.88 89.0162 87.128074.181291.7465588.02 92.43 87.07 P6 

1275.55 1275.94 1276.011276.03 1275.39111275.3600 1275.5 1275.340 Total generation 
12.5 12.9361 12.958413.021712.3736812.3590 12.501 12.3350 Loss 

1263.05 1263.0039 1263.0516 1263.00831263.017461263.0000 1263 1263.000 Load demand 
15446.02 15450 154501545915443.092515442.6851 15443.962 15442.6642 Cost 
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Table 2. Comparison of simulation results of each method (15-generator system) 
 

SOH_PSO [20] PSO [18] GA [18] MPSO [21] IHSNGHS NGHS-IIUnit 
455.000 439.1162 415.3108455455 453.3500 455.00 P1 
380.000 407.9727 359.7206380380.0000 377.9100 380.00 P2 
130.000 119.6324 104.4250130130 128.1600 130.00 P3 
130.000 129.9925 74.9853130130 128.9200 130.00 P4 
170.000 151.0681 380.2844170170.0000 169.5700 170.00 P5 
459.96 459.9978 426.7902460460 457.4300 460.00 P6 
430.00 425.5601 341.3164430430.0000 427.7800 430.00 P7 
117.53 98.5699 124.786792.727860.0000 77.0100 72.670 P8 
77.90 113.4936 133.144543.028270.8400 83.3900 58.20 P9 
119.54 101.1142 89.2567140.1938160.0000 142.3900 160.00 P10 
54.50 33.9116 60.05728080.0000 78.9400 80.00 P11 
80.00 79.9583 49.99988080.0000 79.3600 80.00 P12 
25.00 25.0042 38.771327.640325.0000 25.4100 25.00 P13 
17.00 41.4140 41.942520.761015.0000 15.8800 15.00 P14 
15.00 35.6140 22.644522.272415.0000 15.7900 15.00 P15 

2662.29 2262.4 2668.42661.62352660.8000 2661.3 2660.9000 Total generation 
32.28 32.4306 38.278229.97830.8290 31.138 30.8614 Loss 

2630.01 2230.03 2630.1218 2631.64552630.0000 2630.0000 2630.0000 Load demand 
32751.39 32858 3311332738.4177832707.1628 32734.6017 32706.7635 Cost 

 
Table 3. Comparison of simulation results of each method (10-generator system) 

 

NPSO [19] IGA_MU [19] MPSO [21] IHS NGHS NGHS-II Unit 
223.3352 219.1261 225.6469 215.2417 212.1329 217.0700 P1 
212.1957 211.1645 212.5351 210.4310 211.8220 211.9100 P2 
276.2167 280.6572 278.7109 282.8876 287.9033 280.6300 P3 
239.4187 238.4770 244.1951 239.9599 243.8860 239.9600 P4 
274.6470 276.4179 285.2029 286.8456 273.9292 286.5800 P5 
239.7974 240.4672 232.7839 238.3166 237.3798 239.5300 P6 
285.5388 287.7399 285.5217 286.3224 287.5214 282.8200 P7 
240.6323 240.7614 241.0419 240.6280 242.0860 238.3400 P8 
429.2637 429.3370 420.0863 425.5656 436.1787 428.4400 P9 
278.9541 275.8518 274.3454 273.8228 267.2318 274.7300 P10 

2700 2700 2700.0706 2700 2701 2700 Sum 
624.1273 624.5178 624.1285 624.0835 624.7894 624.0081 Cost 

 
VII. CONCLUSIONS 

In this paper, a new heuristic approach is proposed 
and applied to economic dispatch problem. The proposed 
approach is based on the improvement of Novel Global 
Harmony Search (NGHS) reported in [26] which is called 
second Novel Global Harmony Search (NGHS-II). With 
the aid of comparisons of the results obtained by NGHS-
II and the results of earlier methods available in the 
literature, it has been shown that the proposed NGHS-II 
is able to find a new optimum solution for the study 
systems. 
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