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Abstract- Ant colony optimization (ACO) which is
inspired by the natural behavior of ants in finding the
shortest path to food is appropriate for solving the
combinatorial optimization problems. Therefore, it is
used to solve the unit commitment problem (UCP) and
attain the minimum cost for scheduling thermal units in
order to produce the demand load. In this paper modified
ACO (MACO) is used to solve the UCP in which particle
swarm optimization (PSO) is used to find the ACO
parameters and genetic algorithm (GA) is used to solve
economic dispatch and to minimize the generation cost in
order to select the committed units appropriately. At first,
all possible combinations that satisfy the demanded load
and spinning reserve are calculated by means of genetic
algorithm and the minimum economic generation cost of
each state is calculated to make the ants search space
(ASS). Then the artificial ants are allowed to search in
this space. Problem formulation takes into consideration
the minimum up and down time constraints, startup cost,
shutdown cost, spinning reserve, and generation limit
constraints. The feasibility of the proposed method in two
systems is explained and the results are compared with
the other methods. The results reveal that the suggested
algorithm is more encouraging than the other ones.

Keywords: Unit Commitment, Modified Ant Colony
Optimization, Genetic Algorithm, Constraints.

I. INTRODUCTION

The UCP is a difficult optimization problem that has
enough potential to save millions of dollars annually in
electrical industry and also, unit commitment in power
systems refers to the optimization problem for
determining the on/off states of generating units that
minimize the operating cost for a given time horizon. The
objective of problem is that minimize the all operation
cost with considering security constraints [1-3].

This problem was proposed first by Lowery in 1966
through dynamic programming. Basically the most
accurate way to solve this problem is enumeration
method in which through testing all possible
combinations of units in the studding time interval the
optimal answer can be achieved. The problem of this
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method is its long solving time that increases
exponentially as the size of the system grows [4]. The
methods for solving the unit commitment problem are
divided in three categories: classic, intelligent, and
mixed. Some examples of the first category are as
follows: enumeration, priority list, dynamic programming
and Lagrange relaxation.

These methods are not so accepted in terms of
convergence, calculation time and quality of answer. The
widely used intelligent methods to solve this problem are:
tabu search [5], neural network [6], genetic algorithm [7,
8], particle swarm optimization [9], mixed genetic
algorithm and fuzzy logic [10], and ant colony search [11,
12].

The ACO which was first proposed by Dorigo to
solve complex optimization problems, including traveling
salesman's problem (TSP) attracted the researcher's
attentions. The researchers understood the optimization
potentials through the behavior of ants colony and during
the analysis realized that the ants are able to find the
shortest path to reach the food from the nest that can be
used in solving complex problems.

The ACS algorithm was used to solve the problem of
economic dispatch in a large-scale power system in
reference [13]. In reference [14] the ACS was employed
to improve productive scheduling of hydroelectric
generation. In reference [15] ACS was used to reduce the
loss in a reconfigured distribution network.

In reference [16] ACS was used to optimize the
reactive power. To solve the UCP in this paper, firstly,
the problem is formulated as a constraint optimization
problem and then the ACO algorithm is applied to
achieve minimum total generation cost. Genetic
algorithm is also used to solve the economic dispatch
problem. To show its feasibility, the proposed method
was employed to two systems: one with 4 units for 8
hours and another with 10 units for 24 hours and the
results are compared with the other methods. In this
algorithm by means of PSO algorithm, the optimal
parameters of ACO algorithm are achieved and at the
end, a brief study is done about.
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Il. PROBLEM FORMULATION
The aim of solving the UCP is to reduce total
generation cost for scheduling starting up and shutting
down the units and will be defined as following:

COStNH_Z S [[FCPy) +STC,(1- “Uin- 1))] it 1)
+SDi(1-Up)Uy1)]

The Equation (1) represents a cost function in which
the related costs to the consumed fuel for N units along
with the cost of starting up and off for committed units
during the whole determined period of time (H) is also
considered [2, 3]. The cost of fuel is usually shown as
following in which a;, b; and ¢; are constants.
FC,(Py)=c;Py’ +b:Py+a; (2)

The starting up cost of the generators can be
represented as an exponential function:

Toﬁ”

STC)=TSy+| 1 e< ’h) BSi+MS;, A3)
Of course, to model the cost of starting up the following
multiform function can be used in:

_ {Hsc Xf/f <MD;+Cs_hrs

= . 4

Csc X?ﬁ >MD;+Cs_hrs @)
where Cs_hrs is the number of hours by passing them
after the minimum shutting down time, the cost of
restarting up the units is Csc. Otherwise, the cost equals
Hsc. Solving the UCP includes some constraints as
follows [3]:
1. Real power balance constraint: it guarantees the
equality of total generation power whit the total
prediction load.
YY1 PuUy=D (%)
2. Spinning reserve constraint: is the difference between
total active potential of the system and the sum of loads
and losses. The spinning reserve constraint is 10% in this

paper.

YN Piman Ui=DytR,, (6)
3. Generation limit constraint:

Pi(min)SPihSPi(max) (7)
4. Minimum up time constraint:

X7 ()=MU; (@)
5. Minimum down time constraint:

X (ty=MD, ©)

I11. NATURAL BEHAVIOR OF ANTS

The ACO was first used by Dorigo and his colleague
in 1991 to solve the complex optimization problems
including TSP, attracts the researcher's attention and then
in 1996 and 1997 the ant colony algorithm was proposed
[11]. Ants are insects that live together. Investigating the
behavior of these insects represents coordination among
them. The ants are able to perform an organized task on
their own, but in a colony there is a good coordination
among the members in performing tasks such as finding
the food and the shortest path to it. In natural world ants
lay down a chemical trail on their passage during their
search for food that is used to inform other ants. Those
ants that travel the path leading to food also lay down this
kind of chemical trail.
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So each ant follows the path that more number of ants
has passed through it means the shortest path to food [1].
In Figure 1 the distance between D and H, B and H; and
B and D is one and C is placed in the center of B and D.
evaluate what will happen in times 0, 1 and 2. Consider
30 new ants go from A to B and 30 from E to D with the
speed of one unit per time unit.

In =0 there is no pheromone in the path but there are
30 ants in B and 30 ants in D. They determine their path
randomly. Therefore there are 15 ants traveling each path
averagely (Figure 1-b). This process continues so long as
all ants choose the shorter path. In nature the pheromone
trail evaporate gradually over time. So the amount of
pheromone in the paths that are traveled through less
reduces gradually and they will be omitted from the
search space.

E E E

‘ { 30 ants H 30 ants

10 uu . e

d\
R

10ants "+, 20 ants

‘ =0
ants o +, 15 ann
A

/W‘ 1/\
\Aw \/“
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a

b

20 ants

110¢

‘B
‘ 30 ants
A

Figure 1. An example with artificial ants

IV. OPERATION OF MODIFIED ANT COLONY
ALGORITHM

In this study, at first at each time all states that are
able to provide the demanded load and spinning reserve
are calculated and the minimum cost relating to each state
by use of economic dispatch is calculated by applying
genetic algorithm (GA). In fact, in each state for different
values of U, the values of P; should be found by
considering generation limit constraint of each unit, and
the following objective function should be minimized.

AilFCi(Pi)in:Psch and Vi szmSP <Pmaxi (10)
where Py, is demanded power in each hour. In this case
the ants searching space is formed. Now for the paths
between each two hours a pheromone matrix is formed in
which if the first hour has » states and the second one m
states, the related matrix is an mxn one that the initial
value for all the indices is 1. So for a system with 10 units
in a 24-hour interval 24 pheromone matrices are formed.
It is presented in Figure 2.

At first the artificial ants are released randomly in
cities of the first hour and they are allowed to move in the
search space to find the minimum cost. Each ant should
start its journey from one of the cities at the first hour and
ends it in a city at last hour. At this time the total path
cost of each ant including production costs, starting up
and shutting down cost for the units is calculated. It is
also checked that whether the constraints relating to
minimum up time and down time of the units are
followed or not.
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If the constraints is followed the cost of the path
equals the calculated cost, otherwise the path cost is
changed in to a big number so that it is omitted from the
optimal paths. When all ants reach the end, the minimum
cost among the calculated costs is identified. If this
amount is less than the least amount in the previous
repetitions it will be saved as the minimum cost,
otherwise the amount of minimum cost won't change.
This algorithm is dividing into three general sections of
initializing, the passing strategy, and updating pheromone
matrices.

Transition cost

Transition cost

Pheromone matrix 1 Pheromone matrix H-1

Figure 2. The searching space for finding the optimal path

A. Initializing

In this section the number of states (cities) relating to
each hour is determined and initial parameters as number
of ants (m), the relative importance of the pheromone trail
(a), relative importance of the visibility (f) and
pheromone evaporation coefficient (p) set according to
Table 1 and the pheromone initial value of each path (z;)
set as 1.

Table 1. Optimal parameters achieved from PSO algorithm

Parameters 4-unit system 10-unit system
Number of ants (m) 277 530
a 0.8079 1.6445
B 10.8376 28.5412
p 0.6892 0.1185

B. Passing Strategy

The Ants in traveling from one city (i) to another city
(7) use the passing strategy law. In this law, the city that is
nearer to the present city is more likely to be selected.
Other cities have the possibility of being selected, though.
In this law at first to travel from city ith to jth the
selection probabilities of city jth is calculated through the
following relation and all of these probabilities are saved
in matrix P(k)(f).

[n,(z)]“.[fi_]ﬂ

’1 7 J.S € tabu(k)

Pi0@0=1y PO (i
0 otherwise
P=[Pyy Py ... Pyy] (12)

where 7;; is the amount of pheromone in the path between
cities of ith and jth, the L; is the distance between the two
cities of ith and jth (cost between states) and P; is the
selection probability of city jth as the next city of ith.
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The next city (jth) is achieved through solving in
Equation (13) in which ¢ is a random number between 0
and 1 that is produces randomly in each time of applying
the law.
Y1 Pusq (13)
C. Pheromone Update

When all the ants have completed their tour, the
pheromone matrix should be updated so the ants can be
lead to shorter path in the next step. Updating each
pheromone matrix is performing as following:

If the ant kth in hour nth is in city ith and at hour (n+1)th
is in city jth the (i, j) and (j, i) indexes of nth matrix is
updated according to the following:

1
(s )0

In which p is pheromone evaporation constant, L, is the
total cost of the tour from the first city to the last one and
¢ is a constant that is multiplied by the denominator to
reduce the size of it. (¢=0/0001).

: (14)
Tl'j:

D. Implementation of MACO to Solve UCP

The process of the MACO algorithm for solving UCP
can be summarized as follows (Figure 3):
Step 1: forming the search space of each ant for all hours;
Step 2: initializing the values of parameters and forming
the pheromone matrices;
Step 3: ants are distributed in cities of 1st hour randomly;
Step 4: ants choose their next cities by using the passing
strategy law to reach to the final city;
Step 5: the constraint of minimum up and down time of
units are being checked, the total path cost is calculated
and in case of not satisfying the constraints, the
calculated cost will be changed in to a big number;
Step 6: pheromone matrices, and minimum cost are
updated and in the case of not satisfying the ending
condition, the algorithm goes to step 4.

Forming the Ants search
system(ASS)

Initializing and setting the
parameters and pheromone matrices

Randomly distribution of
ants in first hour cities

Using passing strategy and
determining next cities for each ant

-

Are constraints relating to
minimum up and down
time followed correctly?
I

Yes

update Pheromone Calculate totall cost and Cost of this path=<
save it
A

Select minimum cost from the
beginning to here

End condition?
Yes

End

Figure 3. Flowchart for MACO method
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V. SETTING THE MACO PARAMETERS

A good convergence is achieved through the
appropriate selection of parameters so correct setting of
parameters m, a, f and p influence the calculations and
achieving the optimal solution greatly. Then, by
conceding these parameters variable and determining
their limits as «€[0, 5], P€[0, 30], p€[0, 1] and
me€[1, 300] for a system with 4 units and m€[1, 600] for a
10-unit system are considered as the parameters of PSO
algorithm. The fitness function is used in PSO algorithm
is total cost resulting from MACO algorithm in addition
to the given repetition number for achieving that cost are
also taken in to account.

In fact it is in order to determine by which class of
parameters in a definite number of repetitions, ant colony
algorithm reaches the minimum cost sooner. By keeping
all the parameters constant, except one and changing that
parameters in the limit mentioned above their roles will
be investigated. This is one of the main contributions of
this work. The result of these observations is presented in
Table 2. The more the number of ants the less number of
repetition it reaches minimum cost but calculation time
and size increases. The exact values of these parameters
that attained through PSO are shown in Table 1.

Table 2. Investigating the role of parameters in converging the answer of MACO

a 0 0.2 0.5 1 1.5 2 3 5
Avg. TGC | 74976.9 | 74593.2 | 74521.2 | 74520.3 | 74520.3 | 74522.8 | 74688.2 | 74862.2
B 0 1 2 5 10 15 20 25 30
Avg TGC | 74664.4 | 74654.2 | 74577.1 | 74522.0 | 74520.3 | 74520.3 | 74520.3 | 74577.3 | 74570.4
P 0.1 0.2 0.5 0.7 0.9
Avg. TGC | 74719.0 | 74522.0 | 74520.3 | 74520.3 | 74521.2
m 20 50 100 150 200 250 300
Avg. TGC | 75726.0 | 74856.7 | 74708.9 | 74520.3 | 74520.3 | 74520.3 | 74520.3

Avg. TGC: average total generation cost in $/day

VI. SIMULATION RESULTS

This algorithm is applied to a 4-unit system and a 10-
unit system that their specifications are listed in
Appendices (Tables 7, 8, 9 and 10). There are 24
pheromone matrices for the 10-unit system and 8
pheromone matrices for 4-unit one. All simulations are
done by MATLAB. The repetition number for the 4-unit
system is 10 and for the 10 unit system is 30.

In Table 3 that shows the simulation results for the 4-
unit system, the starting up cost of the units and fuel costs
are represented separately in each hour and the total cost
for 8 hours is 74520.344 §.

Table 4 represents the results from MACO with other
methods. The numerical results affirmed the proficiency
of proposed approach over other existing methods. Table
5 also includes the results of the 10-unit system with the
related costs for each hour and the generators states in
each. The total cost for 24 hours is 83051.1033 $.

In Table 6 the results from this algorithm are
compared with the results from other methods. Figures 4
and 5 show the graph of the amount of cost in terms of
number of repetitions for the 4-unit and 10-unit systems
respectively. These figures represent a good convergence
speed for proposed algorithm.

Table 3. Results from simulation of the 4-unit system

Hour Load Unit number Fuel cost Starting up cost Total cost
(MW) 1 2 3 4 $) (&) $)

1 450 292.857 | 132.143 25 0 9389.038 150 9539.038

2 530 300 205 25 0 10856.240 0 10856.240

3 600 300 250 30 20 12534.54 0.02 12534.56

4 540 300 215 25 0 11043.80 0 11043.80

5 400 276.19 123.810 0 0 8205.788 0 8205.788

6 Y80 196.19 83.81 0 0 6067.148 0 6067.148

7 290 202.857 | 87.143 0 0 6243.828 0 6243.828

8 500 300 200 0 0 10030.360 0 10030.360

Total cost 74370.324 150.02 74520.344

Table 4. Comparing simulation results for the 4-unit system whit other references
Hour Load LR [9] LR-PSO [9] FL[10] Proposed ACO
(MW) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 450 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0
2 530 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0
3 600 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
4 540 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0
5 400 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0
6 280 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0
7 290 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0
8 500 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0
Total Cost 74808 75231.9 74683.6 74520.344
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Table 5. Results from simulation of the 10-unit system

Hour Load Units Cost
(MW) 1 2 3 4 5 6 7 8 9 10 %
1 1170 1 1 1 1 1 1 1 1 1 1 2425.504
2 1250 1 1 1 1 1 1 1 0 1 1 2592.893
3 1380 1 1 1 1 1 1 1 0 1 1 2875.633
4 1570 1 1 1 1 1 1 1 1 1 1 3408.703
5 1690 1 1 1 1 1 1 1 1 1 1 3578.545
6 1820 1 1 1 1 1 1 1 1 1 1 3906.292
7 1910 1 1 1 1 1 1 1 1 1 1 4146.285
8 1940 1 1 1 1 1 1 1 1 1 1 4229.597
9 1990 1 1 1 1 1 1 1 1 1 1 4378.006
10 1990 1 1 1 1 1 1 1 1 1 1 4378.006
11 1970 1 1 1 1 1 1 1 1 1 1 4316.945
12 1940 1 1 1 1 1 1 1 1 1 1 4229.597
13 1910 1 1 1 1 1 1 1 1 1 1 4146.285
14 1830 1 1 1 1 1 1 1 1 1 1 3932.427
15 1870 1 1 1 1 1 1 1 1 1 1 4038.283
16 1830 1 1 1 1 1 1 1 1 1 1 3932.427
17 1690 1 1 1 1 1 1 1 1 1 1 3578.545
18 1510 1 1 1 1 1 1 1 1 1 1 3160.748
19 1420 1 1 1 1 1 1 1 1 1 1 2965.116
20 1310 1 1 1 1 1 1 1 0 1 1 2751.549
21 1620 1 1 1 1 1 1 1 0 1 1 2614.143
22 1210 1 1 1 1 1 1 1 0 1 1 2508.618
23 1250 1 1 1 1 1 1 1 0 1 1 2592.893
24 1140 1 1 1 1 1 1 1 0 1 1 2363.931
Total cost 83051.1033
544 10 7.5E“m4
5.42 - B zEal i
a4 B =
= FE2F B
85.358 A 2
g TEF -
B.36 B g
g 748 B
.24 - i =
a3z i 7.A6 -
845 B 0 5 20 25 a0 7ady z 3 Z 5 & 7 g B

Figure 4. Answer convergence graph for the 10 unit system

iterations

10

Figure 5. Answer convergence graph for the 4 unit system

Table 6. Comparing simulation results for the 10-unit system whit other methods

Hour Load Proposed ACO Ant colony system [11] Branch and bound [11] |Dynamic Programming [11] EACO[17, 18]
(MW) Cost Gen Status Cost Gen Status Cost Gen Status Cost Gen Status Cost Gen Status
1 1170 24255 | 1101111111 2849.6 1111111101 2725.8 1111111001 2638.1 1111101001 2593.5 1111111101
2 1250 2592.8 | 1101111111 2606.6 1111111101 2606.1 1111111001 2719.1 1111111001 2606.9 1111111101
3 1380 2875.6 | 1101111111 2887.0 1111111101 2981.7 1111111011 2889.4 1111111001 2981.4 1111111111
4 1570 3408.7 111111111 3396.8 1111111111 3409.8 1111111111 3426.0 1111111101 3295.8 1111111111
5 1690 3578.5 111111111 3578.7 1111111111 3578.7 1111111111 3607.4 1111111101 3578.7 1111111111
6 1820 3906.2 | 1111111111 3906.4 1111111111 3906.4 1111111111 3948.8 1111111101 3906.4 1111111111
7 1910 4146.2 | 1111111111 4146.4 1111111111 4146.4 1111111111 4247.4 1111111111 4146.4 1111111111
8 1940 4229.5 | 1111111111 4229.7 1111111111 4229.7 1111111111 4229.7 1111111111 4229.7 1111111111
9 1990 4378.0 | 1111111111 4378.2 1111111111 4378.2 1111111111 4378.2 1111111111 4378.2 1111111111
10 1990 4378.0 | 1111111111 4378.2 1111111111 4378.2 1111111111 4378.2 1111111111 4378.2 1111111111
11 1970 43169 | 1111111111 4317.1 1111111111 4378.2 1111111111 4378.2 1111111111 4317.1 1111111111
12 1940 4229.5 | 1111111111 4229.7 1111111111 4317.1 1111111111 4317.1 1111111111 4229.7 1111111111
13 1910 4146.2 | 1111111111 4146.4 1111111111 4146.4 1111111111 4146.4 1111111111 4146.4 1111111111
14 1830 39324 | 1111111111 3932.5 1111111111 3932.5 1111111111 3932.5 1111111111 3932.5 1111111111
15 1870 4038.2 | 1111111111 4038.4 1111111111 4038.4 1111111111 4038.4 1111111111 4038.4 1111111111
16 1830 39324 | 1111111111 3932.5 1111111111 3932.5 1111111111 3932.5 1111111111 3932.5 1111111111
17 1690 3578.5 | 1111111111 3578.7 1111111111 3578.7 1111111111 3578.7 1111111111 3578.7 1111111111
18 1510 3160.7 | 1111111111 3160.9 1111111111 3160.9 1111111111 3160.9 1111111111 3160.9 1111111111
19 1420 2965.1 1111111111 2996.2 1101111111 2996.2 1101111111 2968.5 1111111111 2965.2 1111111111
20 1310 2751.5 | 1101111111 2721.7 1101111111 2721.7 1101111111 2734.9 1111111111 2770.2 1101011111
21 1260 2614.1 1101111111 2614.3 1101111111 2614.3 1101111111 2633.2 1111111111 2610.7 1101011111
22 1210 2508.6 | 1101111111 2508.7 1101111111 2508.7 1101111111 2533.2 1111111111 2528.8 1101011111
23 1250 2592.8 | 1101111111 2593.0 1101111111 2593.0 1101111111 2612.9 1111111111 2589.5 1101011111
24 1140 2363.9 | 1101111111 2364.1 1101111111 2364.1 1101111111 2394.1 1101111111 23453 1101011111
Total cost 83051.1033 83491.42 83475.25 83652.4 83240.17
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VII. CONCLUSIONS

This paper deals with the UC problem and the
necessity for an algorithm to solve it. Since ACO is
appropriate for solving the mixed optimization problems
and has enough potential to find the optimal solution, it is
appropriate to solve UCP. Then by using the proposed
method (MACO), UCP for two sample systems were
solved. The results were compared with other related

methods from different references. The algorithms
optimal parameters were calculated by PSO technique
and their roles were investigated. The findings
represented that the suggested method is more
economical than other methods and is able to save a large
amount of cost annually. It is also encouraging in terms
of convergence speed.

APPENDICES

Table 7. Unit data for 4-unit system

Unit Poax P [ p y MU MD Hsc Csc Cs_hrs Initial state
MW) | (MW) ($/h) | $MWh) | $/MW?h) | (h) (h) %) %) () )

1 300 75 648.74 16.83 0.0021 5 4 500 1100 5 8

2 250 60 585.62 16.95 0.0042 5 3 170 400 5 8

3 80 25 213.00 20.74 0.0018 4 2 150 350 4 -5

4 60 20 252.00 23.60 0.0034 1 1 0 0.02 0 -6

Table 8. Unit data for 10-unit system
Unit Prax P a g y MU MD Shutdown Hsc Csc Cs_hrs Initial state

(MW) (MW) | ($/h) | ($/MWh) | $/MW?h) | (h) (h) cost ($) (%) $) (h) (h)
1 200 80 82 1.2136 0.00148 3 2 50 70 176 3 4
2 320 120 49 1.2643 0.00289 4 2 60 74 178 4 5
3 150 50 100 1.3285 0.00135 3 2 30 50 113 3 5
4 520 250 105 1.3954 0.00127 5 3 85 110 267 5 7
5 280 80 72 1.3500 0.00261 4 2 52 72 180 3 5
6 150 50 29 1.5400 0.00212 3 2 30 40 113 2 -3
7 120 30 32 1.4000 0.00382 3 2 25 35 94 2 -3
8 110 30 40 1.3500 0.00393 3 2 32 45 114 1 -3
9 80 20 25 1.5000 0.00396 0 0 28 40 101 0 -1
10 60 20 15 1.4000 0.00510 0 0 20 30 85 0 -1

Table 9. Load demand for 8 hours
Hour 1 2 3 4 5 6 7 8
Load (MW) | 450 | 530 | 600 | 540 | 400 | 280 | 290 | 500
Table 10. Load demand for 24 hours
Hour 1 2 3 4 5 6 7 8 9 10 11 12
Load (MW) 1170 1250 1380 1570 1690 1820 1910 1940 1990 1990 1970 1940
Hour 13 14 15 16 17 18 19 20 21 22 23 24
Load (MW) 1910 | 1830 | 1870 | 1830 | 1690 | 1510 | 1420 | 1310 | 1260 | 1210 | 1250 | 1140
NOMENCLATURES X7"(¢): Continuously on time of unit ith (h)

Uy, Status of unit ith at hour 4 (on=1, off=0)

N: Total number of generation units

H: Total number of hours

Costyy: Sum of costs for H hours and for N units
FCy(Py): Generation fuel cost of unit ith at hour Ath for
generating Py,

STC;: Start up cost of unit ith

SD;: Shut down cost of unit ith

TS;»: Generator start up cost

BS;;: Boiler start up cost

MS;;,: Constant start up cost

Tf,’:f : Continuously off time for unit i at hour H (h)

AS;;,: Boiler cold shutdown coefficient

D,: Load demand at hour H (MW)

R, Spinning reserve at hour H (MW)

Piminy: Minimum real power generation of unit ith (MW)
Pinar): Maximum real power generation of unit ith (MW)
MD;: Minimum down time of unit ith

Mu;: Minimum up time of unit ith

34

X(#): Continuously off time of unit ith ()
a: Cost coefficient for generator ($)
b: Cost coefficient for generator ($/MW)

c: Cost coefficient for generator ($/ MWz)
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