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Abstract- Unified power flow controller (UPFC) is the 
most reliable device in the FACTS concept. It has the 
ability to adjust all three control parameters effective in 
power flow and voltage stability. In this paper, a 
linearized model of a power system installed with a 
UPFC has been presented. UPFC has four control loops 
that, by adding an extra signal to one of them, increases 
dynamic stability and load angle oscillations are damped. 
In this paper, after open loop eigenvalue (electro 
mechanical mode) calculations, state-space equations has 
been used to design damping controllers and it has been 
considered to influence active and reactive power flow 
durations as the input of damping controllers, in addition 
to the common speed duration of synchronous generators 
as input damper signals. SVD controllability 
measurements determine the most effective control input 
to apply to the system. Dynamic stability has been 
improved via Lead-Lag and LQR controllers’ 
designation.    
 
Keywords: UPFC, State-Space Equations, SVD, LQR. 
 

I. INTRODUCTION                                                                         
Power transfer in an integrated power system is 

constrained by transient stability, voltage stability and 
small signal stability. These constraints limit a full 
utilization of available transmission corridors. The 
flexible AC transmission system (FACTS) is the 
technology that provides the needed corrections of the 
transmission functionality in order to fully utilize the 
existing transmission facilities and hence, minimizing the 
gap between the stability limit and thermal limit [1].  

A unified power flow controller (UPFC) is one the 
FACTS devices which can control power system 
parameters such as terminal voltage, line impedance and 
phase angle [2]. Recently, researchers have presented 
dynamic UPFC models in order to design a suitable 
controller for power flow, voltage and damping controls 

[9-17]. Wang has presented a modified linearized 
Heffron-Phillips model of a power system installed with a 
UPFC [1, 3, 7, 11] but no effort seems to have been made 
to identify the most suitable UPFC control parameters, in 
order to arrive at a robust damping controller and has not 
used the deviation of active and reactive powers, ΔPe and 
ΔQe as the input control signals.  

The ΔPe and ΔQe signals can be used for oscillation 
damping as input signals due to their improved 
convenience over Δω especially in states where UPFCs 
are set too far from the generator. In this paper, the 
dynamic equations of ΔQe has been calculated and has 
been used from the deviations signals of active and 
reactive power and their sum, and also rotor speed 
deviation as input control signals for Lead-Lag 
controllers and their results have been compared with 
each other.  

In addition, it has examined the relative effectiveness 
of modulating alternative UPFC control parameters mE, 
mB, δE and δB for damping power system oscillations via 
the SVD technique. Additionally, it has designed two 
kinds of power controllers including Lead-Lag, LQR for 
power systems installed with UPFC and their effects has 
been compared for damping the power system 
oscillations. 
 

II. THE POWER SYSTEM CASE STUDY 
Figure 1 shows a single-machine-infinite-bus (SMIB) 

system installed with UPFC. The static excitation system 
model type IEEE-ST1A has been considered. The UPFC 
considered here is assumed to be based on pulse width 
modulation (PWM) converters.  

The UPFC is a combination of a static synchronous 
compensator (STATCOM) and a static synchronous 
series compensator (SSSC) which are coupled via a 
common dc link, to allow bi-directional flow of real 
power between the series output terminals of the SSSC 
and the shunt output terminals of the STATCOM, and are 
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controlled real and reactive series line compensations 
without an external electric energy source. 

The UPFC, by means of angularly unconstraint series 
voltage injection, is able to control, concurrently or 
selectively, the transmission line voltage, impendence 
and angle or alternatively, the real and reactive power 
flow in the line. The UPFC may also provide 
independently controllable shunt reactive compensation. 

Viewing the operation of the UPFC from the stand 
point of conventional power transmission based on 
reactive shunt compensation, series compensation and 
phase shifting, the UPFC can fulfill all these functions 
and thereby meet multiple control objectives by adding 
the injected voltage VBt with appropriate amplitude and 
phase angle, to the terminal voltage VEt. 
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Figure 1. UPFC installed in a SMIB system 
 

III. STATE SPACE EQUATIONS OF POWER 
SYSTEM 

If the general pulse width modulation (PWM) is 
adopted for GTO-based VSCs, the three-phase dynamic 
differential equations of the UPFC are [6]: 
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The equations below can be obtained with a line arising 
from Equation (1). 
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The state-space equations of the system can be 
calculated by combination of Equations (2) to (5) with 
Equation (1): 

x Ax Bu
•

= +  
 

[ , , , , ]T
q fd dcx E E VΔδ Δω Δ Δ Δ′=  (6)   

[ , , , , ]T
pss E E B Bu u m mΔ Δ Δδ Δ Δδ=   

where EmΔ , BmΔ  , EΔδ  and BΔδ  are a linearization of 
the input control signal of the UPFC and the equations 
related to the K parameters have been presented in 
Appendix 3 [17].  The linearized dynamic model of 
Equations (2) to (5) can be seen in Figure 2, where there 
is only one input control signal for uΔ . Figure 2 includes 
the UPFC relating the pertinent variables of electric 
torque, speed, angle, terminal voltage, field voltage, flux 
linkages, UPFC control parameters and dc link voltage. 
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A. Operating Points Calculating in Steady Condition 

The primary d-q based axis of voltage, current and 
load angle of the system, necessary for K parameters 
calculating in Equation (7), have been obtained for the 
three conditions shown below: 
- Case A: light operating condition: 

0.2 pu, 0.01 pue eP Q= =  (8) 
- Case B: nominal operating condition: 

0.8 pu, 0.167 pue eP Q= =  (9) 
- Case C: heavy operating condition: 

1.2 pu, 0.4 pue eP Q= =  (10) 
Step 1: First, by solving the four equations below, we 
compute the parameters tdV , tqV , tdi  and tqi  at every 
operating condition. 

2 2 1td tqV V+ =  (11) 

td td tq tq eV i V i P+ =  (12) 

td tq tq td eV i V i Q− =  (13) 

td q tqV x i=  (14) 
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Figure 2. Modified Heffron-Phillips model of SMIB system with UPFC 
 

Step 2: By solving the 10 equations below, parameters 
EtdV , EtqV  , bdV , bqV , Bdi , Bqi , BtdV , BtqV , Edi  and Eqi  

will be obtained: 
2 2 1
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 (15)  

 
B. Δ eQ  Calculation 

In this section, the dynamic equations relevant to the 
reactive power deviations will be calculated for use as the 
input damping control signal. According to Figure 1, the 
following equations can be written: 
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td q tqV x i=  (18) 
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Dynamic d-q based equations of currents relevant to 

the reference system can be obtained as follows: 

sin
2
sin

( cos )
2

E E dc BdBB
Ed q

d d

dE B B dc
b

d

m V XX
i E

X X
X m V

V
X

Σ Σ

Σ

δ

δ
δ

′= − +

+ +
 (20) 

cos
2

cos
( sin )

2

E E dc Bq
Eq

q

qE B B dc
b

q

m V X
i

X

X m V
V

X

Σ

Σ

δ

δ
δ

= −

− +

 (21) 

sin
( cos )

2
sin

2

dt B B dc
Bd b

d

dE E E dc E
q

d d

X m V
i V

X
X m V X

E
X X

Σ

Σ Σ

δ
δ

δ

= − + −

′− +
 (22) 

cos
( sin )

2

cos
2

qt B B dc
Bq b

q

qE E E dc

q

X m V
i V

X

X m V
X

Σ

Σ

δ
δ

δ

= − + −

−

 (23) 

eQΔ  Signal can be assumed as Equation (24): 
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+ + +
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From Equations (19) to (23) in comparison with 
Equation (24) the K-constant values can be calculated as 
Appendix 2. 
 
C. Singular Value Decomposition  

Singular value decomposition (SVD) is employed to 
measure the controllability of the Electro Mechanical 
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mode (EM mode) from each of the four inputs: (mE, mB, 
Eδ  and Bδ ) [4, 6].  The minimum singular value minσ , is 

estimated over a wide range of operating conditions         
( [ ]: 0.05 1.5eP →  and [ ]: -0.4 0.4eQ →  pu). 

SVD produces a non-negative diametric matrix (S) 
with dimensions of n n×  and it creates unitary U and V 
matrixes as below: 

[ ]* *    ,  , , svd( )x U S V U S V x= =  (25) 
Figure 3 shows the minσ  for all four inputs at 

0.4eQ =  pu. According to Figure 3, it can be seen that 
the EM mode controllability with Eδ  is more than other 
inputs and is the least affected by loading conditions. 
 

 
 

Figure 3. Minimum singular value with all inputs at 0.4eQ =  pu 

 
IV. DESIGN OF DAMPING CONTROLLERS 

 
A. Lead-Lag Controller 

The damping controllers are designed to produce an 
electrical torque in phase with the speed deviation. The 
four control parameters of the UPFC (i.e., mE, mB, Eδ  and 

Bδ ) can be modulated in order to produce the damping 
torque. The speed deviation Δω  is considered as the 
input to the damping controllers. The structure of the 
UPFC based damping controller is shown in Figure 4. It 
consists of gain, signal washout and phase compensator 
blocks. The parameters of the damping controller are 
obtained using the phase compensation technique [12]. 
According to Figure 4, the structures of Lead-Lag 
controllers with Δω  and ePΔ  inputs are very similar. 
 

 
 

Figure 4. Structure of UPFC based damping controller 

The detailed step-by-step procedure for computing the 
parameters of the damping controllers using the phase 
compensation technique is given below. At first, the 
natural frequency of oscillations nω  is calculated for the 
mechanical loop. 

1 0
n

K
M
ω

ω =  (26) 

where the amounts of ω0, K1 and  has been presented 
in Appendix 1. For computing the phase lag between uΔ  
and ePΔ  at ns jω= , we should calculate the transfer 
function of Figure 5, which is a simple control model of 
Figure 5. The phase Lead-Lag compensator CG  is 
designed to provide the required degree of phase 
compensation for 100% phase compensation. 

( ) ( ) 0CG j jω γ ω∠ +∠ =  (27) 
Assuming one Lead-Lag network, 1 2T aT=  the 

transfer function of the phase compensator becomes, 
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Since the phase angle compensated by the Lead-Lag 
network is equal to γ− , the parameters a and T2 are 
computed as, 

2

1 sin
1 sin

1

n

a

T
a

γ
γ

ω

+
=

+

=
 (29) 
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ratio 0.5ξ =  is obtained as, 
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and ( )CG s  and ( )sγ  are computed at ns jω= .  
The signal washout is the high pass filter that prevents 

steady changes in the speed from modifying the UPFC 
input parameter. The value of the washout time constant 
TW should be high enough to allow signals associated 
with oscillations in rotor speed to pass unchanged. From 
the view point of the washout function, the value of TW is 
not critical and may be in the range of 1s to 20s. 

 TW equal to 10s is chosen in the present studies. 
Figure 6 shows the transfer function of the system 
relating the electrical component of the power EMPΔ  
produced by the damping controller Eδ .  
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Therefore, the compensator Lead-Lag controller 
( )CG s′  must be designed to compensate for the phase 

shifting between eQΔ  and Δω . The transfer function 
between eQΔ  and Δω  according to Equation (24), has 
been calculated as Equation (31). For design damping 
controller with input e eP QΔ Δ+ , two Lead-Lag 
compensators must compensate for the phase angle 
between uΔ  and EMPΔ  together. 
 

 
Figure 5. Transfer function of the system relating component of 

electrical power EMPΔ  produced by damping controller Eδ  

 
B. LQR Controller 

The LQR controller for a system described with the 

state-feedback equation x Ax B
•

= +  can calculate the 
optimal amount of K so that the state feedback u Kx= −  
according to Figure 6 to minimize the integral of 
Equation (34). 

 

 
 

Figure 6. Block diagram of a state-space based system with negative 
feedback 

 

0

( ) ( 2 )T T TJ u x Qx u Ru x Nu dt
∞

= + +∫  (33) 

In addition to calculating the optimal value of K, the LQR 
calculates the solution S of the associated Riccati 
equation according to Equation (34). 

1( ) ( ) 0T T TA s sA sB N R B s N Q−+ − + + + =  (34) 
The eigenvalues of closed-loop system 
eig( * )e A B K= −  is calculated, too. Note that the value 

of K is calculated using the response of the Riccati 
equation according to Equation (35). 

[ ]
1( )

, , LQR( , , , , )

T TK R B s N
K s e A B Q R N

−= +

=
 (35) 

V. SIMULATION RESULTS 
Eigen-value (electro mechanical mode) calculations 

should be done before any controller designing. Table 1 
shows the electro mechanical mode of the system without 
any controller, equipped with Lead-Lag, LQR. Based on 
the above table, pole placement of the closed loop system 
equipped with controllers has improved in comparison 
with open loop systems. The linearized models of the 
case study system in Figure 1 with parameters are shown 
in Appendix 1 and have been simulated with MATLAB/ 
SIMULINK. In order to examine the robustness of the 
damping controllers to a step load perturbation, it has 
been applied a step duration in mechanical power (i.e., 

*eig( )e A B K= − ) to the system seen in Figure 2. 
Consequently, the reference system has four inputs; the 
damping input signal in Figure 3 has been added to the 
most effective input Eδ  calculated by the SVD 
technique. Figure 7 shows the dynamic responses of Δω  
with different operating conditions by Lead-Lag 
controller for Eδ  input control signal. 
 
Table 1. Electromechanical mode of the individual terms at B-condition 

 

Without 
controller

0.1052 2.8455j±  

Lead-Lag Eδ Em Bδ  Bm
7446.2780.1 j±− 9.246.0 j±−  72764187.1 j±−  3204.13661.3 j±

LQR 0.417 2.9290j− ±  

 
It is clearly seen that the dynamic performance at a 

heavy condition is better significantly compared to that 
obtained at light and nominal loadings because the speed 
deviation has been damped with minimum settling time at 
a heavy condition. The response of the nominal condition 
has the second rank after the heavy condition because its 
settling time is less than five seconds and its peak 
amplitude value is even greater than the heavy condition. 
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Figure 7. Dynamic responses of Δω  with input control signal Eδ  for 
different operating conditions  
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According to the above, it can be calculated by 
dynamic responses to the 0.01 pumPΔ =  perturbation for 
other input control signals that by comprising all of the 
responses, we can see that adding the damping control 
signal to Eδ  is better than other control inputs because of 
its speed oscillation damp with a shorter time than five 
seconds and minimum amplitude. Figure 8 shows the 
dynamic responses of Δω  for nominal operating 
conditions by Lead-Lag controller with eQΔ , ePΔ  and 

e eP QΔ Δ+   input control signal. By comparing the above 
figures with those obtained by the controller with Δω  
input in Figure 11.b, it can be seen that the response 
quality of eQΔ , ePΔ  , e eP QΔ Δ+  based controller is less 
than Δω  based controller in terms of peak amplitude. 
Therefore it has been used from Δω  input signal for 
LQR and adaptive controller designing. 

 

(a)  

(b)  

(c)  
 

Figure 8. Dynamic responses of ωΔ  at nominal operating conditions for 
different input control signal 

(a): eQΔ      (b): ePΔ      (c): e eP QΔ Δ+  

 
Figure 9 shows the dynamic responses of Δω  at 

nominal condition with LQR damping controller versus 
0.01pumPΔ =   perturbation of input mechanical power. 

 

 
 

Figure 9. The dynamic responses of Δω  at nominal condition with 
LQR damping controller 

 
Dynamic response has nearly the same quality in 

comparison with the Lead-Lag controller at Figure 7 (b) 
in terms of settling time and peak amplitude.  
 

VI. CONCLUSIONS 
In this paper, a UPFC has been used for dynamic 

stability improvement and state-space equations have 
been applied for the design of damping controllers. 
Simulation results operated by MATLAB/SIMULINK 
show that using an input speed deviation signal is better 
than inputs of power deviations, and also adding control 
signals to the active power control loop of the shunt 
inverter decreases speed oscillations effectively. 
According to the simulation results, the designed LQR 
controller for the system has the perfect effect in 
oscillation damping and dynamic stability improvement. 

 
APPENDICES 

 
Appendix 1. Test System Parameters 
Generator: 

2 8.0MJ/MVAM H= = , 0.0D =       
0.3pudX ′ =  5.044sdoT ′ =  1.0pudX =  0.6puqX =  

Excitation System: 
100aK =   0.01saT =  

Transformer : 
0.1putEX =     0.1puE BX X= =    0.1puE BX X= =  

Transmission Line: 
0.3puBVX =      0.5pue BV B tEX X X X= + + =   

Operating Condition: 
1.0putV =    0.8pueP =    1.0pubV =    60Hzf =  

Parameters of DC Link: 
2pudcV =      1pudcC =  

 
Appendix 2. K-Parameters of eQΔ  Calculation 
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Appendix 3. K-Parameters for UPFC HVDC Network 
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