
 
 

 
International Journal on 

 

“Technical and Physical Problems of Engineering” 
 

(IJTPE) 
 

Published by International Organization of IOTPE 
 

ISSN 2077-3528 
 

IJTPE Journal 
 

www.iotpe.com 
 

ijtpe@iotpe.com 

June 2012 Issue 11                             Volume 4                         Number 2 Pages 81-89 

 

81 

A FUZZY WAVELET NEURAL NETWORK LOAD FREQUENCY 
CONTROLLER BASED ON GENETIC ALGORITHM  

 
M. Shahriari Kahkeshi     F. Sheikholeslam  

 
Electrical Engineering Department, Faculty of Engineering, Isfahan University of Technology, Isfahan, Iran 

m.shahriyarikahkeshi@ec.iut.ac.ir, sheikh@cc.iut.ac.ir 
 
 

Abstract- In this paper, a self tuning load frequency 
controller based on Fuzzy Wavelet Neural Network 
(FWNN) and Genetic Algorithm (GA) is developed to 
quench the deviations in frequency and tie line power due 
to load disturbances in an interconnected power system. 
The error between desired system output and output of 
control object is employed to tune the network 
parameters. Tuning rule is accomplished based on GA 
approach by minimizing a compound of control error. For 
the purpose of the proposed method’s evaluation, the 
proposed method is applied to a two area power system 
with considerations regarding governor saturation and the 
results are compared to the one obtained by a classic PI 
controller. Moreover, the robustness of the proposed 
method is tested against change of parameters. The 
simulation studies show that the designed controller by 
proposed method has a very desirable dynamic 
performance, better operation and improved system 
parameters such as settling time and step response rise 
time even when the system parameters change.  
 
Keywords: Fuzzy Wavelet Neural Network, Load 
Frequency Controller, Genetic Algorithm. 
 

I. INTRODUCTION                                                                         
Load Frequency Control (LFC) has been one of the 

major issues in electric power system design and 
operation and is becoming much more significant 
recently in accordance with increasing size, changing 
structure and complexity of modern interconnected power 
systems. The primary objective of the LFC in an 
interconnected power system is to maintain reasonably 
uniform frequency for dividing the load between 
generators of each area and to keep the tie-line power 
interchanges to permissible limits in the presence of 
modeling uncertainties, system nonlinearities and area 
load disturbances [1].   

The conventional proportional-integral (PI) control is 
probably the most commonly used technique in load 
frequency control problem. The main disadvantage of this 
method is that the dynamic performance of the system is 
highly dependent on the selection of its gain. Moreover, 
due to the nonlinearity of power systems, unpredictability 
of load variations and errors in the modeling, the 

operating points of a power system may varies very 
remarkably and randomly during a daily cycle. As a 
result, a fixed controller based on classical theory may no 
longer be suitable in all operating conditions for LFC 
problem.  

During the past decades, several control approaches 
have been proposed and applied to the LFC design 
problem including; optimal control, adaptive control, 
model predictive control, sliding mode control and robust 
control which can be found in [2-6], respectively. Each of 
these techniques has their own advantages and 
disadvantages. More recently, there has been a growing 
concern in Artificial Intelligence (AI) techniques, such as 
fuzzy logic control (FLC) [7], Artificial Neural Network 
(ANN) [8] and Biologically Inspired (BI) algorithms [9-
13] to design of load frequency controller in a power 
system by the researches around the world. 

Recently, based on the combination of feed-forward 
neural networks and wavelet decompositions, wavelet 
neural network (WNN) has received a lot of attention and 
has become a popular tool for function learning [14]. The 
main characteristic of WNN is that some kinds of wavelet 
function are used as the activation function in the hidden 
layer of neural network, so time frequency property of 
wavelet is incorporated into the learning ability of neural 
networks. However, the main problem of WNN with 
fixed wavelet bases is the selection of wavelet frames 
because the dilation and translation parameters of wavelet 
basis are fixed and only the weights are adjustable.  

Daniel et al, [15] have proposed a FWNN based on 
the wavelet theory, fuzzy concepts and neural network to 
improve function approximation accuracy. The FWNN 
has multi resolution capability, simple structure, high 
approximation accuracy and good generalization 
performance. The complexity and uncertainty of the 
system can be also reduced and handled by the concepts 
of fuzzy logic. Also, the local details of non stationary 
signals can be analyzed in terms of the dilation and 
translation parameters of wavelets. Considering these 
specifications, there are many papers that discuss the 
synthesis of a fuzzy wavelet neural inference system for 
function approximation, identification and control of 
nonlinear systems [16-18].   
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In this paper, a new Load Frequency Controller based 
on fuzzy wavelet neural network (FWNN-LFC) is 
proposed to design load frequency controller of a multi-
area power system with system parametric uncertainties. 
The FWNN is used to construct load frequency 
controllers. The architecture of the control system is 
presented and the parameter update rules of the system 
are derived. Learning rules are based on the Genetic 
Algorithm (GA). The orthogonal least square (OLS) 
algorithm is used to purify the wavelets for each rule and 
determine the number of fuzzy rules and network 
dimension. Furthermore, in order to improve the function 
approximation accuracy and general capability of the 
FWNN system, a self-tuning process that uses the GA is 
used to adjust the network’s nonlinear and linear 
parameters such as translation parameter of wavelets, 
membership function characteristic and weights 
coefficients of sub-WNN. 

The proposed approach is implemented to a two-area 
interconnected power system with considerations 
regarding governor saturation. The results obtained by 
proposed approach are compared with those obtained by 
classic PI controller reported in the literature. Simulation 
studies show that the dynamic performance of the 
proposed controller is considerably desirable. 

The paper is organized as follows: to make a proper 
background, the basic concepts of the FWNN and GA are 
briefly explained in Section II. The study system which 
used in the simulations studies is given in section III. In 
section IV, the proposed FWNN-LFC scheme is 
described. Simulation results in the study system are 
provided in section V and some conclusions are drawn in 
section VI. 

 
II. AN OVERVIEW OF FWNN AND GA 

 
A. Fuzzy Wavelet Neural Network Structure 

The FWNN is a multi-layer network which integrates 
fuzzy model with wavelet neural networks.  For a multi-
input-single-output (MISO) with ],...,[ 1 qxxx =

 
as input 

and y as output of the system,  a typical fuzzy wavelet 
neural network for approximating arbitrary nonlinear 
function y can be described by a set of fuzzy rules as 
follow [15]: 
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where iR  (1 )i c≤ ≤  is the ith fuzzy rule and jx
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local model for rule iR . iM  and iT  determine the 
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denotes the translation value of corresponding wavelet k. 
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By applying fuzzy inference mechanism and let ˆiy  be 
the output of each sub-WNN, the whole output of FWNN 
for function ( )y x  is as follows:  
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firing strength of the ith rule for current input and 

satisfies ˆ0 1iμ≤ ≤ , 
1

ˆ 1
c

i
i

μ
=

=∑ . Also, ˆiμ  determines the 

contribution degree of the output of the wavelet based 
model with resolution level, iM .  

A good initialization of wavelet neural networks leads 
to fast convergence. Numbers of methods are 
implemented for initializing wavelets, such as Orthogonal 
Least Square (OLS) procedure and clustering method 
[19]. In this paper the OLS algorithm is used to select 
important wavelets and to determine the number of fuzzy 
rules and network dimension. More details about 
construction of FWNN and network parameter 
initialization can be found in [19]. The structure of 
applied FWNN is shown in Figure 1.  

Furthermore, it is important to adjust the required 
network parameters in the design of dynamic systems. In 
order to avoid trial-and-error, a self-tuning process is 
used by employing the GA to determine significant 
parameters such as dilation, translation, weights, and 
membership functions. On the other word, during the 
learning process, these network parameters are optimized 
using GA. To make a proper background, the concept of 
GA is given in the next subsection. 
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Figure 1. Structure of FWNN [15] 
 

B. Genetic Algorithm 
A genetic algorithm is a probabilistic and population 

search technique that computationally simulates the 
process of biological evolution. The GA starts with a 
randomly selected initial population of feasible solutions, 
and then recombines them in a way to guide their search 
to only the most promising areas of the state space. The 
changes to the population occur through the processes of 
selection based on fitness, and alteration using crossover 
and mutation. The application of selection and alteration 
leads to a population with a higher proportion of better 
solutions. The evolutionary cycle continues until an 
acceptable solution is found in the current generation of 
population, or some control parameter such as the number 
of generations is exceeded. 

Each feasible solution is encoded as a chromosome 
(string) also called a genotype, and each chromosome is 
given a measure of fitness via a fitness (evaluation or 
objective) function. During  each generation, the  
structures  in the  current  population are rated for their 
effectiveness as  domain  solutions,  and on the basis of 
these evaluations, a new population  of  candidate  
solutions is formed using specific genetic operators such 
as  reproduction, crossover, and mutation 

Crossover may be regarded as artificial mating in 
which chromosomes from two individuals are combined 
to create the chromosome for the next generation. This is 
done by splicing two chromosomes from two different 
solutions at a crossover point and swapping the spliced 
parts. The idea is that some genes with good 
characteristics from one chromosome may as a result 
combine with some good genes in the other chromosome 
to create a better solution represented by the new 
chromosome. 

Mutation is a random adjustment in the genetic 
composition. It is useful for introducing new 
characteristics in a population something not achieved 
through crossover alone. The mutation operator changes 
the current value of a gene to a different one. For bit 
string chromosome this change amounts to flipping a 0 
bit to a 1 or vice versa. The steps in the typical genetic 
algorithm for finding a solution to a problem are listed: 
1. Create an initial solution population of a certain size 
randomly 
2. Evaluate each solution in the current generation and 
assign it a fitness value. 
3. Select “good” solutions based on fitness value and 
discard the rest.  
4. If acceptable solution(s) found in the current 
generation or maximum numbers of generations is 
exceeded then stop. 
5. Alter the solution population using crossover and 
mutation to create a new generation o solutions. 
6. Go to step 2. 
 

III. POWER SYSTEM MODEL 
In actual power system operations, the load is varying 

randomly and continuously throughout the day. As a 
result, both frequencies in all areas and tie-line power 
flow between the areas are affected by these load changes 
at operating point. These changes create a mismatch 
between generations and demand that result in exact 
forecast of real power demand cannot be assured. 
Therefore, for good and stable power system operation, 
both the frequency and tie-line power flow should be kept 
constant against the sudden area load perturbations, 
system parameter uncertainties and unknown external 
disturbances. Therefore, to ensure the quality of power 
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supply, a load frequency controller is needed to restoring 
the system frequency and the net interchanges to their 
desired values for each control area, still remain. 

The area frequency deviation ( )fΔ  and tie-line power 
deviation ( )tiePΔ are two important parameters of interest. 
The linear combinations of them are known as area 
control error (ACE). The measurements of all the 
generation and all load in the system for computation of 
the mismatch between the generation and obligation in 
one area is so hard. The mismatch is measured at the area 
control center by using ACE. The ACE for the ith area is 
defined as: 

10 ( )

10
i i i

i

act s act s
i tie tie i i

tie i i

ACE P P B f f

P B f

= − − − =

= Δ − Δ
 (5) 

where 
i

act
tieP  and 

i

s
tieP  are the actual and scheduled 

(manually set) interchange of ith area with neighboring 
areas, respectively. Also, 

i

actf  and s
if  are the area’s 

actual and scheduled frequency, in ith area, and B is the  
frequency bias coefficient of ith area that is a negative 
number measured in MW per 0.1Hz. However, the ACE 
signal often is calculated using the area frequency 
response characteristic β instead of B as follows: 

i tiei i iACE P fβ= Δ + Δ  (6) 
1

i i
i

D
R

β = +  (7) 

In which iD  is the damping ratio or the frequency 
sensitivity of the ith area’s load and iR  is the regulation 
due to governor action in the ith area, or droop 
characteristic. Also, iβ  is frequency bias constant and 
should be high enough such that each area adequately 
contributes to frequency control [20]. 

The frequency and interchanged power are kept at 
their desired values by means of feedback of area control 
error containing deviation in frequency and error in tie- 
line power, and controlling the prime movers of 
generators. The main objective of control system is to 
damp these variations to zero as fast and smooth as 
possible and following a change in load demand values.  

A two-area interconnected power system with 
considering governor limiters is investigated in this study. 
Each area consists of three major components, which are 
turbine, governor, and generator. The detailed transfer 
function block diagram of uncontrolled two-area system 
is shown in Figure 2 where 1fΔ  and 2fΔ  are the 
frequency deviations in area 1 and area 2 respectively in 
Hz. Also 1LPΔ  and 2LPΔ  are the load demand changes in 
areas 1 and 2 respectively in per unit (p.u.). Moreover, 

giT , tiT  and iM  are speed governor time constant (s), 
turbine time constant (s), and power system time constant 
(s) of ith area, respectively. The detailed transfer function 
models of the speed governors and turbines are discussed 
in [1]. Typical data for the system parameters and 
governor limiters, for nominal operation condition, are 
presented in Table 1.  

 
 

Figure 2. Two-area interconnected power system 
 

Table 1. Two Area Interconnected Power System Parameters 
 

Area Parameters 

Area 1 

M=10, D1=0.8, Tg=0.2, Tt=0.5, R1=0.05, 
0.4open

GVX = , 1.5close
GVX = , 

1.2open
GVX =  0.4close

GVX = , T12=2 

Area 2 

M=8, D2=0.9, Tg=0.3, Tt=0.6, R2=0.0625, 
0.4open

GVX = , 1.5close
GVX = , 1.2open

GVX = , 

0.4close
GVX = , T12=2 

        
IV. DESIGN OF FUZZY WAVELET NEURAL 

NETWORK LOAD FREQUENCY CONTROLLER 
USING GENETIC ALGORITHM  

The detailed block diagram for the proposed FWNN 
load frequency controller is given in Figure 3. According 
to this figure, the proposed FWNN-LFC implements two 
input signals for each area. The two signals used for area 
number one is the area control error (ACE) for area 
number one and it’s rate of change. The two input signals 
used for the FWNN load frequency controller of area 
number two is the area control error (ACE) for the area 
number two, and it is rate of change. 

The objective of the control problem is to track the 
frequency deviation to zero in the case of a load 
disturbance. To achieve this control means, the neural 
control system synthesis is performed in the closed-loop 
control system and the linear combinations of frequency 
deviation and tie-line power deviation, i.e. area control 
error (ACE) is taken as tracking error for tuning FWNN 
load frequency controller parameters to provide 
appropriate control input.  

By minimizing a quadratic measure of the tracking 
error, the design problem can be characterized by the GA 
formulation. On the other hand, the GA is used to correct 
the network parameters for adjusting of FWNN load 
frequency controller. By using above control strategy, the 
designing FWNN load frequency controller is equivalent 
to determination of the FWNN parameters.  
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Figure 3. Fuzzy wavelet neural network load frequency controller scheme 
 
The outputs of two FWNN-LFCs, U1 and U2, are 

defined so that tracking error is minimized. To calculate 
the desired control signals, the FWNN parameters 
including dilation, translation, weights, and membership 
functions should be set so that the ACE is minimized. In 
this work, to obtain the FWNN parameters the GA is 
used. In this case, finding the FWNN parameters is 
considered as an optimization problem and the quadratic 
measure of ACE is considered as the objective function. 

Here we used a fitness function that using the ACE of 
each area, as follow: 

( )2 2
1 2

1

L

l
Fitness ACE ACE

=
= +∑  (8) 

where L is number of network training data. According to 
Figure 3, the ACE of each area is measured in each 
iteration and will be given to the GA optimizer. Then the 
solution vector is obtained by GA by minimizing the 
fitness function which gives the FWNN-LFC parameters. 
By using the obtained parameters, the network’s outputs 
are calculated and applied to the system followed by 
calculating the new ACEs. The procedure continues until 
a termination criterion is met. The termination criterion 
could be the number of iterations, or when a solution of 
minimal fitness is found. 

Equations (2)-(4) show that the free parameters to be 
trained in FWNN b are 1

i
jp , 2

i
jp , kt  and 

iMω  where , 
1,...,i c= , 1,...,j q= . Our task is to design the FWNN 

basis function expansion such that the objective function 
(8) minimized. Therefore GA is applied for tuning 
parameters of FWNN by optimizing the following 
objective or cost function. 

( )2 2
1, 2,

1

L

k k k
l

F ACE ACE
=

= +∑  (9) 

where Fk is the fitness of kth chromosome. In the GA, 
each population is a solution to the problem which 
determines the parameters of FWNN, i.e. 

1 2[ , , , ]
i

kNiN iN N
j j Mp p t w . So kth chromosome is represented 

as: 

1 2[ , , , ]
i

kkik ik k T
k j j MC p p t w=  (10) 

In Equation (10), the superscript T denotes the vector 
transpose operation. Thus, all free design parameters that 
to be updated by GA in FWNN load frequency controller 
are as follows: 

1
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 (11) 

By applying the GA, the best chromosome (solution) 
corresponding to the smallest fitness value can be 
obtained. In GA, during each generation, the 
chromosomes are evaluated with some measure of 
fitness, which is calculated from the objective function 
defined in (9).  Then the best solution is chosen. In the 
current problem, the best solution is the one that has 
minimum fitness.  
 

V. SIMULATION RESULTS 
       In this section, a two-control area power system, 
shown in Figure 2 is considered as a test system. The 
typical data for the system parameters and governor 
limiters for nominal operation condition can be given as 
Table 1. To indicate the effectiveness of the proposed 
FWNN load frequency controller for the studied two area 
power system that is subjected to two different load 
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disturbances, the studied power system frequency 
deviations and tie line power are obtained. Comparisons 
between the power system response using the proposed 
wavelet neural network controller, and that using the 
conventional proportional plus integral (PI) controller are 
performed, and the results are discussed 

At first, initializing of the network is performed and 
each FWNN-LFC was trained using a set of 300 input-
output. By applying OLS algorithm, three fuzzy rules 
with three selected wavelets are represented for 
constructing the FWNN based controller. Three fuzzy 
rules are used in FWNN structure and consequently 27 
parameters have to be updated. The initial values of the 
parameters of FWNNs are generated randomly in the 
interval [–10, 10] and a GA based approach is used to 
reach the optimal values. The training of FWNN system 
is performed for 300 data points. The fitness value is 
calculated as (9). 

The number of chromosomes in the population is set 
to be 200. One point crossover is applied with the 
crossover probability 0.9cp =  and the mutation 
probability is selected to be 0.01mp = .  Also, the number 
of iterations is considered to be 500.  

In order to show the ability and effectiveness of the 
proposed method, a conventional PI controller by using 
the approach adopted from [1] is applied for comparison, 
too. It was found that 1 2 0.3I IK K= =  were the best 
selections for having the best performance. 

The designed FWNN load frequency controller and 
those obtained by PI controller are placed in the case 
study (Figure 3). To show the effectiveness of the 
designed controllers, a time domain analysis is performed 
for the case study. To test the proposed method, a sudden 
small load perturbation which continuously disturbs the 
normal operation of the power system is applied to the 
system. Here we use a step load change of 0.01 p.u., (i.e. 

1 2 0.01L LP PΔ = Δ = ). The frequency deviation of both 
areas and tie-line power variation in nominal condition of 
the closed loop system are obtained and shown in 
Figures.4, 5 and 6, respectively.  
 

 
 

Figure 4. Frequency deviation of area 1 

 
 

Figure 5. Frequency deviation of area 2 
 

 
 

Figure 6. Tie-line power deviation 
 

From the comparing curves it can be seen, using the 
proposed method, the frequency deviation and tie-line 
power variation of two areas following the load changes 
and are quickly driven back to zero. It should be 
mentioned that although the overshoot of frequency 
response of classical PI controller shown in Figure 4 is 
better than the proposed approach, but the settling time of 
the latter is better than the former. Generally, by looking 
at Figures 4-6 it can be concluded that the proposed 
method gives a better performance than the classical 
LFC. 

To show the robustness of the proposed approach and 
to investigate the effect of changing the system 
parameters on system performance, two system 
parameters are considered as 20% increase for all system 
parameters (upper bound) and 20% decrease for all 
system parameters (lower bound). The dynamic behavior 
of the system was evaluated for 30 s. Figures 7-12 show 
response system for upper bound and lower bound of 
parameters condition including frequency deviation of 
areas 1 and 2, and also, tie-line power deviation.  
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Figure 7. Frequency deviation of area 1 for upper bound of parameters 
 

 
 

Figure 8. Frequency deviation of area 2 for upper bound of parameters 
 

  
Figure 9. Tie-line power deviation for upper bound of parameters 

 
 

Figure 10. Frequency deviation of area 1 for lower bound of parameters 
 

 
 

Figure 11. Frequency deviation of area 2 for lower bound of parameters 
 

 
 

Figure 12. Tie-line power deviation for lower bound of parameters 
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Figures 7-12 show the dynamic performance of the 
studied two area power system with the conventional PI 
controller and with the proposed fuzzy wavelet neural 
network controller. The superiority of the proposed 
FWNN controller over the conventional PI controller is 
evident in damping the system frequency oscillations 
very fast. Also, there is less undershoot for area number 
one and area number two, and the damping o the tie line 
power oscillations is very fast with the proposed FWNN 
controller. 

 
VI. CONCLUSIONS 

In this paper a new load frequency controller based on 
fuzzy wavelet neural network and genetic algorithm 
(FWNN-LFC) is developed to quench the deviations in 
frequency and tie line power due to load disturbances in 
an interconnected power system. The FWNN is trained to 
tune the parameters of FWNN-LFC based on real-time 
measurements of area control error in each area.  

Also, an efficient genetic algorithm is proposed for 
the learning of FWNN and to find optimal values of the 
parameters of FWNN-LFC. The performance of designed 
FWNN-LFC is tested on a two area interconnected power 
system with considering governor limiters and the results 
obtained are compared with the classical PI controller.   

The robustness and effectiveness of the proposed 
FWNN-LFC is verified under different disturbances. 
Simulation results show that the superiority of the 
proposed FWNN controller over the conventional PI 
controller is evident in damping the system frequency 
oscillations very fast. Also, there is less undershoot for 
area number one and area number two, and the damping o 
the tie line power oscillations is very fast with the 
proposed FWNN load frequency controller. 
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