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Abstract- In this paper we designated a new method on 
the basis of s-transform with fuzzy logic and a particle 
swarm optimization (PSO) algorithm for classification of 
single and combined power quality (PQ) disturbances. 
We exploit S-transform to extract features of power 
quality disturbances and we used the suggested fuzzy 
system to group power quality events regarding the 
extracted features. The PSO algorithm serves to precisely 
show the membership function parameters for the fuzzy 
systems. We regard the DC offset, noise, spike, 
interruption, swell, sag, notch, transient, harmonic and 
flicker as single disturbances. Harmonic with sag, 
harmonic with sag with transient, harmonic with swell 
with transient, harmonic with transient, swell with 
transient and sag with transient are known as combined 
disturbances for the voltage signal. We studied the 
suggested approach’s power to find these PQ 
disturbances as well when white Gaussian noise, with 
various signal to noise ratio (SNR) values, is added to the 
waveforms. In the simulation results part, it is shown that 
the suggested method possesses good average rate of 
accurate identification for various PQ disturbances.    
 
Keywords: Power Quality, Disturbances, PSO 
Algorithm, S-Transform, Classification, Fuzzy System. 
 

I. INTRODUCTION                                                                         
Power quality, in recent years, has turned into a very 

significant issue of electrical power system operation [1] 
since the use of modern power electronic devices has 
increased. These devises are very sensitive to voltage 
disturbances. Disturbances such as voltage sag/swell with 
and without harmonics, momentary interruption, 
harmonic distortion, flicker, notch, spike and transients 
often create waveform  distortions, and this leads to 
problems such as malfunctions, instabilities, short 
lifetime, and failure of electrical equipments and so on 
[2].  

How to extract features of disturbances from a large 
number of power signals and how to recognize them 
automatically are important for further understanding and 
developing power quality. A lot of researchers have 
worked on this notion and suggested automation systems. 
To supervise electrical power quality disturbances, short 

time discrete Fourier transform (STFT) is used most 
normally. In order to have a faster method very fast 
Fourier transform is used in [3]. However, for non-
stationary signals, the STFT does not track the signal 
dynamics appropriately because of the limitations of a 
fixed window width chosen a priori [4, 5].  

As a result, the use of STFT to analyze transient 
signals comprising both high and low frequency 
components would not be successful. The wavelet 
analysis [6-11] shows a windowing technique with 
different regions to solve the deficiency. Decomposing 
the signal into time and frequency resolution, it provides 
a unified methodology to characterize power quality 
events. Although wavelet multi resolution analysis, which 
is synthesized with many neural networks, provides 
efficient classification of power quality (PQ) events, the 
time-domain featured disturbances such as sags, swells, 
etc. may not easily be classified [12, 13]. To add to that 
the defect of wavelet transform is that its ability to detect 
find noisy conditions is not precise. 

S-Transform (ST) is used to extract the feature. It is 
an extension to the ideas of wavelet transform and it is 
formed on the grounds of a moving and scalable 
localizing window and has characteristics above the other 
transforms. We can recognize S-transform as the “phase 
correction” of continuous wavelet transform. This 
transform is able to find the disturbance accurately with 
the noise present [14]. S-transform is superior to wavelet 
transform in that it avoids the requirement of testing 
different families of wavelets to as detect the best one for 
the correct classification. What more, the decomposition 
of the disturbance signals at different resolution levels is 
not required in the S-transform, thereby reducing the 
memory size and computational overhead [15]. 

We have suggested a new method that is designated 
to classify single and combined PQ disturbances using 
fuzzy system oriented with a PSO algorithm. The fuzzy 
system is used for classification of PQ disturbances. 
Optimized values for the parameters of the membership 
functions of this system are provided by the use of the 
PSO algorithm. The features which are extracted from the 
S-transform of the waveforms of the disturbances form 
the inputs of this system.  
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The complexity of this input set is prevented by 
selecting the number and the type of the inputs. 
whatsmore, the rule base of this system is founded to get 
at high precision in the classification of single and 
combined PQ disturbances. It is necessary to notice that 
all single types of PQ disturbances which are mentioned 
in second paragraph of this section can be found in the 
proposed approach.  

Harmonic with sag, harmonic with sag with 
transient, harmonic with swell with transient, harmonic 
with transient, swell with transient and sag with transient 
are also recognized as the combined disturbances of the 
voltage signal. Moreover, to manifest the effectiveness of 
the suggested method, we examined its sensitivity to 
noise under various noisy conditions. 
 

II. S-TRANSFORM 
      We calculate the discrete version of the S-transform 
by taking the advantage of the efficiency of the fast 
Fourier transform (FFT) and the convolution theorem. 
The discrete Fourier transform of the sampled signal 
h(kT), k = 0, 1, …, N-1 is: 
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where T is time interval and N is the overall number of 
samples. The discrete inverse of S-transform is obtained 
as 
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      By exploiting the efficiency of the FFT and the 
convolution theorem, the discrete ST can be calculated 
quickly. The phase spectrum as wellas the amplitude 
spectrum is localized by the ST. The S-transform 
performs multi resolution analysis on a time varying 
signal as its window width differs inversely with 
frequency. This allocates high time resolution at high 
frequency and high frequency resolution at low time. S-
transform can be applied effectively because power 
quality disturbances make the power signal a non-
stationary one.  
In this paper, we use the ST amplitude matrix (5) to 
analyze the power disturbances in which the rows are the 
frequencies and the columns are the time values. The ST 
amplitude with all frequencies at the same time are 
displayed in each row and the ST amplitude with time 
varying from 0 to N-1 in the same frequency is displayed 
in each column, where n= 0, 1 … N/2 -1. 

( , ) , nA kT f S kT
NT

⎡ ⎤= ⎢ ⎥⎣ ⎦
 (5) 

III. POWER QUALITY ANALYSIS USING ST 
      Power-quality disturbance signals, in this paper, are 
ten single disturbances and six complex disturbances, 
including DC offset, noise, spike, interruption, swell, sag, 
notch, transient, harmonic, and flicker are recognized as 
single disturbances and harmonic with sag, harmonic 
with sag with transient, harmonic with swell with 
transient, harmonic with transient, swell with transient 
and sag with transient as combined disturbances. We 
simulated These signals by using Matlab code and we 
mixed them random white noise of zero mean having 
signal to noise ratio (SNR) differing from 40 to 20 dB. In 
Figures 1 to 17, we can observe the normal signal and 
above 16 types of power disturbance signals and the time-
frequency-amplitude curves generated from their STA, 
respectively. 
 

 
 

Figure 1. Voltage normal and extracted curves 
 

 
 

Figure 2. Voltage sag and extracted curves 
 

 
 

Figure 3. Voltage interruption and extracted curves 
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Figure 4. Voltage swell and extracted curves 
 

 
 

Figure 5. Oscillatory transient and extracted curves 
 

 
 

Figure 6. Voltage notch and extracted curves 
 

 
 

Figure 7. Voltage harmonic and extracted curves 
 

 
 

Figure 8. Voltage flicker and extracted curves 
 

 
 

Figure 9. Voltage spike and extracted curves 
 

 
 

Figure 10. Noise and extracted curves 
 

 
 

Figure 11. DC offset signal and extracted curves 
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Figure 12. Voltage sag with harmonics and extracted curves 
 

 
Figure 13. Voltage sag with harmonic with transient and extracted curves 

 

 
Figure 14. Voltage swell with harmonic with transient and extracted curves 

 

 
 

Figure 15. Harmonic with transient and extracted curves 

 
 

Figure 16. Swell with transient and extracted curves 
 

 
Figure 17. Sag with transient and extracted curves 

 
     Figures 2 to 17 (a)-(d) show similar plots as in Figure 
1. The normal signal without any disturbance is shown 
Figure 1 (a). The curve of the sampling disturbance signal 
is shown in Figures 2 to 17 (a). Figures 2 to 17 (b) are 
called maximum amplitude curves (MAX-curve), which 
is frequency versus maximum amplitude by searching 
rows of STA at every frequency. The disturbance’s 
frequency components and their maximum amplitude are 
shown in the curve. Where there is a peak on MAC, a 
frequency component on disturbance signal could be 
observed.  

To lay an example, normal signal includes only one 
frequency component (50 Hz) and consecutively, there is 
only one peak on MAC related to this signal. In signal of 
harmonic, there are two peaks in its related MAC and it 
shows that there are 2 frequency components in this 
disturbance signal. Figures 2 to 17 (c) are recognized as 
the standard deviation curves (STD-curve), which 
displays frequency versus the standard deviation of STA 
at every frequency. This curve is the important factor to 
extract transient features in disturbance signals such as 
oscillatory transient. To extract this curve, the standard 
deviation of time values in each frequency in STA-matrix 
should be counted and be assigned for that frequency. In 
SDC, related to the oscillatory transient, the frequency 
which has a peak on this curve is the same as the 
frequency of transient signal, which is loaded on the 
primary signal. In other signal where there is a deviation 
on the amplitude of a frequency component; there is a 
peak on the same frequency of SDC.  
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Figures 2 to 17 (d) are called the fundamental 
frequency amplitude curve (FUND-curve), which shows 
the STA at the fundamental frequency (f1 =50 Hz). As it 
is shown in Figure 1 (d) for a normal signal, which does 
not have disturbance the magnitude of the FUND-curve is 
a constant value (which is half the maximum amplitude 
of the normal signal). 
 
A. Feature Extraction 

Recognizing Power quality disturbance is very 
difficult, because it contains a wide range of disturbance 
categories and varying degree of irregularities. We 
outlined the Description of PQ events considered for 
recognition in Section 3. The time frequency contours are 
generated the generalized S-transform, which clearly 
displays the disturbance pattern for visual examination. 
These contours provide some features that can be 
exploited by fuzzy logic or neural network-based pattern 
recognition systems to classify these disturbance 
frequency regions for amplitude frequency and amplitude 
time plots. The parameters used for classification in this 
paper are listed below. 
F1: The number of harmonic components in the 
disturbance signal is brought in this index and it is the 
same as number of peaks on MAC in Figures 1 (b) to 17 
(b). 
F2: If there is a peak on SDC in Figures 1 (c) to 17 (c) in 
the proximity of the fundamental frequency, F2=1, 
otherwise F2=0. So for signals of sag, swell, interrupt, 
flicker, harmonic with sag, harmonic with sag with 
transient, harmonic with swell with transient, swell with 
transient and sag with transient, F2=1 and for other 
signals F2=0. 
F3: If there is a peak in the proximity of the high 
frequency on SDC, F3=1 and otherwise F3=0. Into lay an 
example in Figure 5 (c), we can observe a peak on a 
frequency higher than fundamental frequency. 
Consequently, for the signal of oscillatory transient F3=1. 
F4: This is the average value of FFAC for each 
disturbance. 
F5: We define this index in order to discriminate sag from 
interrupt. This index can be derived as follows 

5 min min ( )F A    FFAC= =  (5) 
F6: If MAC has value in zero frequency (f=0), then F6>1 
and otherwise F6=0. For example, in Figure 5 (b) there is 
a peak on f=0. As a result, for a signal having DC 
component, F6>1 and for other, F6=0. This index can be 
obtained from (6). 

6 0( )F MAC f=  (6) 
 
B. Fuzzy System for Disturbance Classification 

Although several researchers have extensively 
investigated the neural network classifiers for PQ event 
recognition, the fuzzy logic-based recognition scheme 
proposes a very simple but accurate classification strategy 
of the PQ events. The following fuzzy system is provided 
for classification of the PQ disturbances. Fig.18 pictures 
the overall structures of this system. 

F1, F2, F3, F4, F5 and F6 are input parameters for 
Fuzzy decision making system. Fuzzy process is in use 

for Trapezoidal membership functions. Outputs of this 
system are ‘sag’, ‘swell’, ‘interrupt’, ‘oscillatory 
transient’, ‘spike’, ‘notch’, ‘harmonic’, ‘flicker’, ‘noise’ 
and ‘DC offset’. Membership functions of all inputs, 
chosen parameters and the type of membership function 
can be observed in Table 1. In section 5.1, we presented 
determination of membership function parameters of this 
system using the PSO algorithm. Table 2 consists of 
Fuzzy rules for each disturbance signal. For example 5th 
rule of this table is as follows: 

Based on Rule 5, if (F2 is F22 and F4 is F41 and F5 is 
F52) then Sag=1 where setting “Sag” to one indicates the 
occurrence of a sag disturbance, and setting it to zero 
indicates non-occurrence of a sag disturbance. If only one 
of the outputs becomes 1, it indicates that there is a single 
disturbance on the test signal, and having multiple 1 in 
outputs indicates that there is a combined disturbance on 
the test signal. 
 

Table 1. The membership function of fuzzy system inputs 
 

Labels Range Membership 
function 

labels 

Membership 
function 

types 

Membership function 
parameters 

F1 [0 10] F11 Trapezoidal [0.02 0.41 1.78 1.91] 

  F12  [1.68 1.79 8.9 9.30] 

F2 [-1 2] F21 Trapezoidal [-0.25 -0.17 0.55 0.88] 

  F22  [0.76 0.86 1.66 1.73] 

F3 [-1 2] F31 Trapezoidal [-0.37 -0.21 0.63 0.78] 

  F32  [0.77 0.85 1.56 1.87] 

F4 [0 72] F41 Trapezoidal [3.23 7.65 46.36 48.65] 

  F42  [48.02 48.48 49 49.5] 

  F43  [49.2 49.65 50.5 51.02] 

  F44  [50.65 51.21 68.01 70.17]

F5 [0 50] F51 Trapezoidal [0 0.11 4.89 5.02] 

  F52  [4.92 5.11 44.95 47.2] 

F6 [0 50] F61 Trapezoidal [7.43 8.43 46.54 49.74] 

 
Table 2. The rule base in the fuzzy system  

 

 F1 F2 F3 F4 F5 F6 Harm.Tran.Int.SagSwellSpike Not.NoiseFlick.DC

Rule 
1 F12 – – – – – 1 0 0 0 0 0 0 0 0 0

Rule 
2 – – F32 – – – 0 1 0 0 0 0 0 0 0 0

Rule 
3 – F22 – F41F51 – 0 0 1 0 0 0 0 0 0 0

Rule 
4 – F22 – F41F52 – 0 0 0 1 0 0 0 0 0 0

Rule 
5 – F22 – F44 – – 0 0 0 0 1 0 0 0 0 0

Rule 
6 – F21F31F44 – – 0 0 0 0 0 1 0 0 0 0

Rule 
7 – F21F31F42 – – 0 0 0 0 0 0 1 0 0 0

Rule 
8 – F21F31F43 – – 0 0 0 0 0 0 0 1 0 0

Rule 
9 – F22 – F42 – – 0 0 0 0 0 0 0 0 1 0

Rule 
10 – F22 – F43 – – 0 0 0 0 0 0 0 0 1 0

Rule 
11 – – – – – F61 0 0 0 0 0 0 0 0 0 1
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Figure 18. The schematic representation of the fuzzy system for the classification of PQ disturbances 
 

    Here, Sugeno is used for fuzzy inference engine; AND 
is used for rule evaluation, and ‘min’ is used for the 
strategy. At the case of having multiple rules for each 
output, OR is used which has ‘max’ strategy. Weighted 
sum (wtsum) methods used for defuzzification process. 
 
C. PSO Algorithm 

Eberhart and Kennedy [16] introduced The PSO 
algorithm in 1995, which is a kind of group-based 
evolutionary algorithm. It is similar to other group-based 
evolutionary algorithms starting with an initial group 
containing “n” particles (potential solutions to the 
optimization problem) in a multi-dimensional search 
space. It is clear that some particles are in better positions 
than the others. The particles change their positions in 
this space until they encounter one of the stop-criteria of 
the algorithm. These criteria can contain reaching an 
optimal state or ending the number of specific repetitions 
in the algorithm. For each of iterations, the position of 
each particle is changed on the grounds of knowing the 
particle’s previous movements and knowing the 
neighboring particles. In fact, each particle knows its best 
former position and the best position among all particles. 
For each of iterations, the velocity vector of the particle is 
updated according to Equation (7): 

1 1

2 2

( 1) ( ) ( ( ) - ( ))

( ( ) - ( ))

i i ii

i

v t    wv t   c r pbest t  x t  

 c r gbest t  x t

+ = + +

+
 (7) 

In this equation, w is the inertia weight factor, ( )iv t  is 

the previous velocity of the particle, ( 1)iv t +  is the 
present velocity of the particle, c1 and c2 are weighting 
acceleration constants, ipbest  is the best position that a 
particle of the group has gained till now, and gbest  is the 

best position that a whole group has gained till now. r1 
and r2 are random numbers with uniform distribution in 
the range [0-1] having values produced for each particle 
in each iteration. 

Enough attention should be paid that w>0 is a factor 
controlling the effect of ( )iv t  in ( 1)iv t + . Also, c1>0 and 
c2>0 make the particle move toward iPbest and Gbest , 
respectively. The values of c1 and c2 are normally equal 
and selected in a way that c1+c2≤4. 
     After the updating of its particle’s velocity, the 
particle moves toward its new position ( ( 1))ix t +  from its 

present position ( ( ))ix t  by Equation (8): 

( 1) ( ) ( 1)i i ix t  x t v t  + = + +  (8) 
Then, the objective function (f) is inspected at the new 
position of the ith particle. If the goal of optimization is 
the minimization of the objective function, then ipbest
and gbest are updated by Equations (9) and (10), 
respectively. 

( )  if ( ( )) ( ( 1))
( 1)

( 1) if ( ( )) ( ( 1))
ii i

i
i i

pbest t     f pbest t f x t  
pbest t   

x t        f pbest t f x t  i

⎧ ≤ +⎪+ = ⎨
+ > +⎪⎩  

(9) 

1

1

( 1) { ( 1), .. . , ( 1)} |
( ( 1)) min{ ( ( 1)), . . . , ( ( 1))

n

n

gbest t    pbest t       pbest t  
f pbest t    f pbest t       f pbest t  

+ ∈ + +

+ = + +
(10) 

The term iv  in Equation (7) lies in the range of 
max max( , )v v−  to decrease the possibility that the particle 

exits from the search space. There are many experiences 
with PSO; vmax is set at a typical value of 10-20% of 

max min( )x x− . We should pay attention that if a too high 
value is chosen for vmax, particles may fly past good 
positions and if vmax is set at too small values, particles 
may not explore sufficiently beyond local positions [17]. 
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While proper choice of w permits the algorithm to 
converge to the optimal point in less iteration. In the 
conventional PSO algorithm, the w factor decreases from 
the value of 0.9 to 0.4 during the iteration of the 
algorithm based on the following equation: 

max min
max

max

-
-

w  w
w  w  k

k
=  (11) 

where kmax is the maximum number of iterations and k is 
the present iteration number. 
 
D. The Application of the PSO Algorithm to the 
Proposed Fuzzy Systems 

The PSO algorithm is employed to precisely find out 
the parameters of the membership functions for the inputs 
to the suggested fuzzy system. To elaborate on the 
variation intervals of these parameters, we first have to 
obtain the variation range for each feature describing the 
waveform of each type of disturbance. Then by analyzing 
the variation range of these features, we can determine 
the variation range of the membership function 
parameters for each rule. Figure 19 presents the flowchart 
of the implementation of the PSO algorithm to specify 
the parameters of the membership functions used to 
identify each disturbance.  
 

 
Figure 19. The flowchart of the PSO algorithm to determine the 

membership function parameters 
 
     As shown, the PSO algorithm varies the membership 
function parameters until the mistake identification rate is 
minimized for a known collection of waveforms of each 
single disturbance type (DC offset, noise, spike, 
interruption, swell, sag, notch, transient, harmonic or 
flicker). 
 

V. SIMULATION RESULTS 
For this purpose, a 25kV and 100MVA generator is 

selected to supply a linear load through a 21km feeder 
and a 25kV/600V transformer. For generating voltage 
sag, different cases of load to network or short circuit 
connections are simulated. Swell disturbance is generated 
by disconnecting different values of loads from the 

network. Voltage flicker occurred by a variable load 
instead of linear load of the system. This variable load 
can produce voltage flicker using a load that absorbs 
continuously changing currents; like an arc furnace. By 
changing characteristics of the variable load, different 
types of flicker signal can be generated. Transient signal 
is generated by capacitor switching in the beginning of 
the feeder. By changing the value of the capacitor bank, 
frequency of the transient disturbance can be varied. 
Voltage harmonic is generated by a six pulse controlled 
rectifier as a nonlinear load. Figure 20 shows the 
simulation diagram of considered test system in Matlab 
(Simulink) which is used for generating some of test 
signals in testing stages. Results of performing the 
proposed method for disturbance signal Classification is 
shown in Tables 3 and 4 for single and combined 
disturbances, respectively. 
 

Table 3. Classification results for the single PQ disturbances 
 

PQ 
Disturbances 

40dB 30dB 20dB 
Noise Noise Noise 

Harmonic %100 %98 %97 
Sag %98 %95 %93 

Swell %99 %98 %95 
Interrupt %100 %96 %93 
Transient %99 %97 %95 

Spike %100 %99 %94 
Notch %100 %95 %91 
Flicker %90 %88 %85 
Noise %94 %90 %88 
DC %100 %99 %96 
Ave 98% 95.50% 92.70% 

 
Table 4. Classification results for the combined PQ disturbances 

 
PQ 

Disturbances 
40dB 30dB 20dB 
Noise Noise Noise 

Harmonic + Sag %92 %91 %88 
Harmonic + Sag + Transient %91 %90 %88 

Harmonic + Swell + Transient %97 %95 %90 
Sag + Transient %93 %90 %85 

Swell + Transient %95 %94 %92  
Harmonic + Transient %100 %98 %96 

Average 94.67% 93.17% 89.83% 
 

It can be easily understood from Tables 3 and 4 that 
the suggested method is a precise and accurate one which 
can classify almost all single and combined disturbance 
signals correctly. However, even high levels of noise 
don’t noticeably affect the accuracy of the suggested 
method. So this can guarantee the usage of this method in 
all real applications. 
 

VI. CONCLUSIONS 
This paper brings forward a simple and new method 

for classification of ten typical kinds of single and six 
combined power-quality disturbances. The generalized S-
transform with a variable window as a function of PQ 
signal frequency is used to produce contours and feature 
vectors for pattern classifications. A fuzzy system is used 
in this method to classify the disturbances. Not only can 
the proposed method classify almost all possible power 
quality disturbances, but also it has a very precise 
classification process. Besides, the accuracy of suggested 
method in noisy environment proves the robustness of the 
method. 

Start 

Type = 0 

Type = Type + 1 

Type < 11   End 

Determine membership functions that involved in 
identification of “Type” single disturbance.  

 

Execute PSO algorithm 

 

Assign parameters of this membership functions  

No 

Yes 
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Figure 20. Simulated network to produce disturbance signals 
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