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Abstract- In this paper, synchronization of energy 
resources demand-supply system in China is considered.  
The original system behavior can be modeled via a 
fractional order chaotic system. A new active hybrid 
method based on feedback linearization control method 
has been proposed for synchronization of the energy 
resources demand and supply systems. Besides, the 
stability of the synchronized system been investigated, 
analytically and the necessary and sufficient condition for 
asymptotic stability of the error dynamics has been 
achieved. Next, numerical simulations are performed to 
verify the effectiveness of the proposed synchronization 
scheme. The results show the out-performance of the 
proposed method with respect to the methods in the 
literature. Low controller effort, short settling time, 
insignificant steady state error and simple controller 
design are advantages of using this method. 
 
Keywords: Chaos, Fractional Order System, Chaotic 
Behavior, Energy Resources Demand Supply System, 
Hybrid Control, Fractional Calculus. 
 

I. INTRODUCTION 
Fractional calculus is a 300 years old mathematical 

topic. Although it has a long history, for many years it 
was not used in physics and engineering. However, 
during the last decades, fractional calculus starts to attract 
increasing attention of physicists and engineers from an 
application point of view [1-3]. It was found that many 
systems in interdisciplinary fields can be elegantly 
described with the help of fractional derivatives. Many 
systems are known to display fractional-order dynamics, 
such as viscoelastic systems [4], dielectric polarization 
[5], electrode-electrolyte polarization [6], electromagnetic 
waves [7], quantitative finance [8], and quantum 
evolution of complex systems [9].  

In this era, synchronization of identical and non-
identical fractional order chaotic systems has attracted a 
vast range of researches and many effective methods 
have been developed for synchronization of different 
fractional order chaotic systems [10-15]. One of the new 
real systems whose dynamic behavior can be well 
described by fractional order chaotic systems is the real 

energy resources demand-supply system. That is, the 
main problem of such systems is to synchronize the 
demand and supply energy systems to achieve good 
functionality of the entire energy resource demand-supply 
system.  In the literature, different methods have been 
employed for synchronization of the energy resources 
demand-supply systems such as adaptive synchronization 
[16-18], robust chaos synchronization [19], and linear 
feedback synchronization [20, 21]. Some other control 
methods such as state feedback and PID   [22, 23] can be 
used for synchronizing, as well. 

The fractional chaotic model of energy resources 
demand-supply system for two regions in china has been 
first introduced in [24], where projective synchronization 
method has been used for synchronization of the system 
in [25]. In this paper, a new active hybrid synchronization 
method for this system is proposed. The synchronization 
method is an active method which achieves 
synchronization based on the state feedback control 
method.   

This rest of this paper is organized as follows. In 
section II, basic definitions in fractional calculus, 
notations and numerical algorithms are given. In the 
section III, the stability and chaos prediction in fractional 
order systems are surveyed. In the section IV, the 
synchronization scheme is described. The proposed 
synchronization method for the chaotic fractional-order 
energy resource demand-supply systems are introduced in 
section V. Section VI provided some simulation to show 
the effectiveness of the proposed method. Finally, the 
paper is concluded in section VII. 
 
II. BASIC DEFINITION AND PRELIMINARIES OF 

FRACTIONAL ORDER CALCULUS 
Fractional-order integration and differentiation are the 

generalization of the integer order ones. Efforts to extend 
the specific definitions of the traditional integer-order to 
the more general arbitrary order context led to different 
definitions for fractional order differentiation. There are 
three commonly used definitions of the fractional-order 
differential operator. Grunwald-Letnikov, Riemann-
Liouville, and Caputo definitions. The Grunwald-
Letnikov (GL) definition is given by [26]: 
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The Riemann-Liouville (RL) definition is described 
by: 
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where, n  is the first integer which is not less than q , i.e. 
nqn <≤−1  and (.)Γ  is the well-known Euler’s gamma 

function: 

1

0

( ) s ts t e dt
∞

− −Γ = ∫   (3) 

The Caputo definition is written as: 
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where, n  is the first integer which is not less than q, i.e. 
1n q n− ≤ < . The Laplace transform of the Riemann-

Liouville fractional derivative is: 
11
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where, L  means Laplace transform, and s  is a complex 
variable. It shows that the non-integer order derivative of 
the function at  0t =  is required in the Laplace transform 
of the Riemann-Liouville fractional derivative. However, 
this problem does not exist in the Laplace transform of 
the Caputo definition, which is given by: 
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However, only the integer order derivatives of the 
function appear in the Laplace transform of the Caputo 
derivative. Upon considering the initial conditions to 
zero, this formula reduces to: 

{ ( )} { ( )}q qL D f t S L f t=  (7) 
On the other hand, the Grunwald-Letnikov definition 

and the Riemann-Liouville definition are equivalent for a 
wide class of functions. However, the initial conditions 
for the fractional differential equation (FDE) with the 
Caputo derivative are in the same form as for integer-
order derivatives which have well understood physical 
meaning. So the Caputo fractional derivative is more 
popular than the Riemann-Liouville definition of 
fractional derivative, when modeling real-world 
phenomena with FDE. Hence, we choose the Caputo 
derivative in this paper, as it is common in the literature 
[26]. 
 

III. STABILITY ANALYSIS FOR FRACTIONAL 
ORDER SYSTEMS 

Fractional order differential equations are at least as 
stable as their integer orders counterparts, because 
systems with memory are typically more stable than their 

memory less alternatives [27]. So, the autonomous 
dynamic 0,  (0)qD x Ax x x= =  is asymptotically stable if 
the following condition is met [28]: 

| arg(eig( )) |
2

qA π
>   (8) 

where,  0 1q< <  and ( )eig A  represents the eigenvalues 
of matrix A . Here, each component of states decays 
toward 0, like qt− . Furthermore, the system is stable if 

| arg(eig( )) |
2

qA π
>  and those critical eigenvalues which 

satisfy | arg(eig( )) |
2

qA π
=  have geometric multiplicity of 

1. The stability region for 0 1q< <  is shown in Figure 1. 
Now, consider the following autonomous commensurate 
order of fractional system: 

( )qD x f x=  (9) 

where, 0 1q< < and nx R∈ . The equilibrium points of 
system Equation (9) are found by solving the equation: 

( ) 0f x =     (10) 
These points are locally and asymptotically stable if 

all eigenvalues of the Jacobin matrix fA
x
∂

=
∂

, which are 

evaluated at the equilibrium points-satisfy the following 
condition [27, 28]: 

| arg(eig( )) |
2

qA π
<     (11) 

The minimum value of q which results in chaotic 
behavior of system, calculated by (12) [29]: 

min
2max{ | arg(eig( )) |}q A
π

=         (12) 

The main advantage of fractional expression of 
system in stability analysis is; all parameters of system 
(including the region of stability) could be affected by q. 
This means more compactness in the system 
representation will be achieved rather than classic 
representation of systems.  

In other words, in comparison with integer order 
expression with the same resolution, fractional order 
expression would provide better conditions both in 
stability analysis and design procedure. 
 

 
 

Figure1. Stability region of the FOLTI system with fractional order, 
0 1q< ≤  
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Theorem 1 [29]: The following n-dimensional linear 
fractional-order autonomous system: 

0,  (0)qD x Ax x x= =   (13) 

10 20 0 1 2, (0) ( , ,...., ) ,  ( , ,...., )n n T T
n nA R x x x x q q q q×∈ = = and 

0 1 ( 1, 2,..., )iq i n< < = , is asymptotically stable if A  is 
an upper or lower triangular Matrix and all eigenvalues of 
A  are negative real numbers. 

 
IV. SYSTEM MODEL 

In this section the model of chaotic fractional-order 
energy resource demand-supply system is proposed. The 
following model with fractional-order derivative was 
proposed by Sun et al. [24] to describe the real energy 
resources demand-supply system for two regions in 
China. That is: 
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where, x  is the energy resources demand in region ,A y  
is the energy resources supply from region B  to region 

,A z , is the energy resources import in region 
, , , , , 0i i iA a b c M N >  are positive constants, and 

N M< and 1 2 30 , , 1q q q< < .  
 

V. SYNCHRONIZATION SCHEME 
Assume that the master (drive) and slave (response) 

systems are described as: 
Master system: 
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Error is defined as: 
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Control law is defined as follows: 
1, 2,3i fi liu u u i= + =  (18) 

where, fiu  is obtained by feedback linearization method 

and liu  is obtained by state feedback. Error system is 
now defined as follows: 
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By feedback linearization method, fiu is obtained as: 
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By merging Equations (20) and (19), error system is 
defined as: 
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Now, liu is described by (22): 
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From, Equation (22), the matrix A is obtained as: 
11 1 12 2 13 2

21 3 22 1 23 2

31 32 33 1 3

a a a a a a
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a a a c c
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where, , , , 1, 2,3i ja i j =  are obtained satisfying 
conditions of Theorem 1. 
 

VI. SIMULATION RESULTS 
In this part, the real energy resources demand-supply 

system for two regions in China is simulated. Two cases 
have been considered for simulation. In the first case, the 
operation conditions have been assumed as in [25].  
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In [25] projective synchronization method has been 
employed for synchronization of the energy resources 
demand-supply system. Simulation results are compared 
by the results in [25]. In the second case, another 
operating condition has been considered where the 
observed chaos is more severe than the first case. As it 
will be seen in both cases the proposed method has 
shown very good performance for synchronization of the 
systems. 
 
A. Case 1 

Consider the parameters of the system in Equation 
(15) as: 

1 2 3

1 2

1 2 3

1 2 3

0 0 0

( , , ) (0.98,0.85,0.92)
( , ) (0.1,0.3)
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( , ) (2,1)
( , , ) (0.2,0.1,0.8)

q q q
a a
b b b
c c c
M N
x y z

=⎧
⎪ =⎪
⎪ =⎪
⎨ =⎪
⎪ =
⎪
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For this system, its chaotic state trajectories as well as 
its attractor have been shown in Figures 2 and 3. In order 
to perform the synchronization, we consider  

0 0 0( , , ) (0.2,0.1,0.8)m m mx y z =  and 0 0 0( , , )s s sx y z =  
(0.6, 0.3,1.2)−  as considered in [25].  
 

 
 

Figure 2. State trajectories of the master chaotic system 
 

 
 

Figure 3. Chaotic attractor of the master chaotic system 
 

Applying the input control signals as in Equations 
(20) and (22), and from Theorem 1, the matrix K is 
obtained as: 

 

1 0 0
0.2 1 0
0 0 1

K
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

From the mentioned matrix K, the eigenvalues of the 
error dynamics are calculated as: 

1,2,3 1.01, 0.9, 1.05λ = − − −  
As it is seen, all of these eigenvalues are stable. The 

master and slave state trajectories, the related error 
signals and the control efforts are shown in Figures 4 to 
6, respectively. As it is observed that the synchronization 
has been done very well, with small settling time and 
reasonable control effort. Besides, in order to show the 
out-performance of the proposed method, the master and 
slave state trajectories of the system synchronized by the 
projective synchronization method of [25] are shown in 
Figure 7.   
 

 
 

Figure 4. Master and slave systems state trajectories synchronized by 
the proposed method for Case 1 

 

 
 

Figure 5. Error trajectories of the synchronized master and slave 
systems for Case 1 

 

 
 

Figure 6. Control signals for the synchronized system by the proposed 
method for Case 1 
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As seen in Figure 7, although the states of the slave 
system somehow follow the overall behavior of those the 
master system, but the synchronization error never 
converges to zero. That is, even the steady state 
synchronization error does not remain constant, but, it is 
time varying and noticeably large. This makes the 
errorless predictable to compensate for it. On the other 
hand, the error in case of the proposed active hybrid 
method tends to zero in a settling time of less than 30 
seconds. Therefore, the synchronization goal has been 
met very well via the proposed method. Overally 
speaking, the proposed method has very good 
performance in both speed of response and steady state 
tracking capability in comparison with that of [25]. 

 
B. Case 2 

In this case, new conditions are applied and the 
synchronization has been achieved via the proposed 
method. Let us consider 1 2 3( , , ) (0.98,0.85,0.82)q q q = , 

0 0 0( , , ) (0.2,0.1,0.8)m m mx y z =  and 0 0 0( , , )s s sx y z =   
(0.6, 0.3,1.2)− . Applying the input control signals as in 
Equations (20) and (22), and from Theorem.1, the matrix 
K  is obtained as: 

1 0 0
0.5 1 0
0 0 1

K
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

From the mentioned matrix K, the eigenvalues of the 
error system are stated at below points: 

1,2,3 1.05, 0.65, 1.26λ = − − −  
 

 
 

Figure 7. Master and slave systems state trajectories synchronized by 
the method in [25] for Case 2 

 
It is clear that all of these eigenvalues are stable. In 

this case, in order to show the role of controller clearer, 
the control signals have been applied at t = 5 and 
thereafter. The master and slave state trajectories, the 
related error signals and the control efforts are shown in 
Figures 8 to 10, respectively. As seen, the state variables 
of the two systems have become synchronized in a very 
short time. Besides, the control efforts are reasonably 
small. The error signals converge to zero and it means 
that the synchronization performs, thoroughly.  

 
 

VII. CONCLUSIONS 
In this paper, a new active hybrid control method is 

proposed for synchronization of the chaotic fractional-
order energy resources demand-supply systems in China. 
The method is based on feedback linearization method.  
The stability analysis is performed for the closed loop 
synchronized system and the necessary and sufficient 
condition for asymptotic stability of the error dynamics 
has been achieved. Besides, based on the provided 
analyses, the controller parameters can be tuned for the 
desired transient response requirements. From the 
presented results, it is demonstrated that the presented 
method has good features such as perfect 
synchronization, fast response, no tracking error and low 
cost (low control signal amplitude). 
 

 
 

Figure 8. Master and slave systems state trajectories synchronized by 
the proposed method for Case 2 

 

 
 

Figure 9. Error trajectories of the synchronized master and slave 
systems for Case 2 

 

 
 

Figure 10. Control signals for the synchronized system by the proposed 
method for Case 2 
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