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Abstract- Content Based Image Retrieval (CBIR) 
systems retrieve brain images from that database which 
are similar to the query image. CBIR is the application of 
computer vision. That has been one on the most vivid 
research areas in the field of computer vision over the last 
10 years. Instead of text based searching, CBIR 
efficiently retrieves images that are visually similar to 
query image. In CBIR query is given in the form of 
image. This paper aims to provide an efficient medical 
image data Retrieval in Diagnosis Brain Disease. 
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I. INTRODUCTION 
CBIR in the medical field presents a growing trend in 

publications [1].The use of CBIR in medical diagnostics 
is the hardest but it is the most important application for 
image retrieval in the medical domain [2]. For the clinical 
decision-making process, it is important to find similar 
images in various modalities acquired in various stages of 
the disease progression. Content based image retrieval 
has been one of the most active areas in computer science 
in the last decade as the number of digital images 
available keeps growing. One of the fields that may 
benefit more from CBIR is medicine, where the 
efficiency of digital images is huge. Image retrieval can 
be very rich to a big variety of companies [3].  

Teaching and research in the healthcare domain may 
benefit significantly by the use of CBIR as visually 
interesting images are found in the existing large 
repositories. Content Based Image Retrieval  technology 
has seen proposed to benefit not only the management of 
increasingly large image collections, but also to aid 
clinical medicine, research, and education relying on 
visual content in the data [4]. As a result of advances in 
the internet and various imaging technologies, the volume 
of images produced from different sources increases 
drastically [5].  

CBIR including its key components: image feature 
extraction, similarity comparison, indexing scheme, and 
interactive query interface; followed by a short review of 
the major image visual features, such as color, texture, 

shape, and spatial relationships .Content-based image 
retrieval is becoming an important field with the advance 
of multimedia and imaging technology ever increasingly. 
It makes use of image features, such as color, shape and 
texture, to index images with minimal human 
intervention [6]. Content based indexing and retrieval of 
images exploits automatic extraction of these features for 
managing information on large-scale image databases. 
Digital image processing consists of five stages: 
acquisition, preprocessing, segmentation, representation 
and description, and recognizing and interpretation [7] 
but commonly used in medical grayscale image for 
recognizing. The fundamental content based image 
retrieval system consists of two major parts, feature 
extraction and classification (Figure 1). 
 

 
 

Figure 1. A scheme of a typical M-CBIR system 
 

One of the important application domains in medical 
imaging is the MR brain imaging. Although early 
systems existed already in the beginning of the 1980s 
[48], the majority would recall IBMs Query by Image 
Content (QBIC) as the start of content based image 
retrieval. Table 1 provides a more complete list of the 
major CBIR systems along with the citations. 
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A color from the color look-up table that is very near 
to the image pixel color is then selected and it will be 
stored as new color pixel in the image. These operations 
will be done using the Euclidean distance formula. 

2 2
1 1 2 2

2

1

( , ) ( ) ( ) ... ( )

( )

n n

n

i i
i

d p q q p q p q p

q p
=

= − + − + + − =

= −∑
 (1) 

Region marking is done using 8 Connected 
Neighboring Region Growing method [18]. But for brain 
images, usually three tissue classes are considered: gray 
matter, white matter, and cerebrospinal fluid [9]. The 
basic standard behind color indexing an image database 
is, given a query image, to find and return all database 
images whose color composition and content are very 
similar to that of the query image. The following 
subsections will explore some of the most popular and 
effective methods of color-based image retrieval, 
addressing both their potential strengths as well as their 
associated weaknesses. 
 
B. Color Histogram Based CBIR Methods in MRI 

Comparing the color content of images is an obvious, 
and consequently popular, choice for performing image 
retrieval duties. One of the most important features that 
make the recognition of images possible by humans is 
color. Color is a property that depends on the reflection of 
light to the eye and the processing of that information in 
the brain. Color histogram distances should include some 
measure of how similar two different colors are for 
example QBIC system defines its color histogram 
distance as: 

( , ) ( ( ) ( )) ( ( ) ( ))T
histd I Q h I h Q A h I h Q= − −  (2) 

Usually colors are defined in three dimensional color 
spaces. These could be RGB (Red, Green, and Blue), 
This space is rarely used for indexing and querying 
because it does not correspond well to the human color 
perception. Other color spaces such as hue, saturation, 
value or  HSV or HSB (Hue, Saturation, and Brightness). 
To being a measurement of the overall color content in an 
image, histograms have certain characteristics which 
make them well suited for image retrieval tasks to 
retrieve images based on their color histograms, some 
similarity or distance measure must first be defined. 

 
C. Texture Based Retrieval 

Texture is one of the most important defining features 
of an image. This similarity is more complex than color 
similarity. It is characterized by the spatial distribution of 
gray levels in a neighborhood [19, 20]. Performing image 
retrieval based on texture features in many ways 
resembles the basic methods of color-based CBIR. Due to 
the imprecise understanding and definition of texture, the 
researches in texture based features have larger variety 
than color-based features. Hence, texture is an important 
feature in defining high-level semantics for image 
retrieval purpose [21]. Texture features commonly used 
in image retrieval systems include spectral features, such 
as features obtained using Gabor filtering [22]. 

In texture based techniques, feature sets normally 
include co-occurrence matrices and Gabor filters, region 
based approaches use various kinds of segmentation 
schemes. We can be using to feature extraction with 
Gabor filter. Gabor filter is used as the texture feature 
representation in the implemented system. Gabor filter 
can be represented by the following equation in the 
spatial domain: 

, , ( , ) ( , ), exp[2 ( cos sin )]G x y g x y j x yσ ϕ θ σ π ϕ θ θ= +  (3) 
where 

2 2

2 2
1 ( )exp

2 2
n x ygσ πσ σ

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4) 

In the conventional Gabor filter design approaches, 
the best filter parameters are commonly selected so that 
the corresponding energy is a maximum for each specific 
texture. Two-dimensional Gabor functions are given by: 

2 2

2 2
1 1( , ) exp 2

2 2x y x y

x yg x y jWxπ
πδ δ δ δ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (5) 

 
D. Shape Based CBIR Retrieval 

In shape-based techniques, feature sets normally 
include edges, corners, and curvature scale space and 
chain codes. Unlike color and texture, shapes and objects 
are not global attributes of an image. In the color and 
texture realm, distance measures are used to establish if a 
given image has a specified color or texture, and whether 
or not it exists in the same approximate position as the 
query image. Shape representations can be generally 
divided into two categories [19]: 
1. Boundary based;  
2. Region based. 
 

 
 

Figure 3. Boundary based shape representation 
 

Boundary based shape representation only uses the 
outer boundary of the shape as shown in Figure 3. This is 
done by describing the considered region using its 
external characteristics; i.e., the pixels along the object 
boundary. For a sequence of pixels, one classical kind of 
matting uses Fourier descriptors to compare two shapes. 
In separate case, the shape is represented by a sequence 
of N points. From this sequence of points, a sequence of 
unit vector:  

1

1

k k
k

k k

v v
v

v v
+

+

−
=

−
 (6) 
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E. Boundary Matching with Fourier Descriptor  
So the dimensions of the Fourier descriptors used for 

indexing shapes are reduced much. s(t), t = 0, 1, …, L, 
complacent it is normalized to N points in the sampling 
stage, the discrete Fourier transform of s(t) is given by 
below function: 

1

0

1 2( )exp    ,   0,1,..., 1
N

n
t

j ntu s t n N
N N

π−

=

−⎛ ⎞= = −⎜ ⎟
⎝ ⎠

∑  (7) 

Region based shape representation uses the entire 
shape region by describing the considered region using its 
internal characteristics; i.e., the pixels contained in that 
region [13]. Querying a database using shape features can 
allow physicians to identify malformations or tumors that 
otherwise might be missed [23]. To identify a shape, we 
must find where its edges, that is, are where a big change 
in the gray level intensities occurs (Figure 4). 
 

 
 

                           (a)                                                        (b) 
 

Figure 4. Example of (a) an original grey level image and  
(b) its segmented form 

 
IV. SIMILARITY MEASURES 

One of the biggest challenges in any CBIR system is 
how to define an appropriate measure assessing the 
similarity to be used for database indexing and/or 
similarity-based ranking of the retrieved images with 
respect to the query [24]. A common and rather 
straightforward method is to employ vector distances in a 
high dimensional normal vector space, commonly a 
Euclidean space, in which each image is represented with 
a point corresponding to its image descriptor/feature 
vector [25]. Intuitively, shorter distances correspond to 
higher similarity. The choice of metric depends on the 
type of image features/descriptors as well as on their 
representation. 
 

V. IMAGE RETRIEVAL APPLICATION FOR 
MAGNETIC RESONANCE (MR) BRAIN IMAGES 

The goal of diagnostic medical image retrieval is to 
provide diagnostic support by displaying relevant past 
cases, along with proven pathologies as ground truth [26]. 
fMRI (functional Magnetic Resonance Imaging) [27] is a 
technique used to “monitor” brain activities. Many of the 
proposed retrieval systems in the area of medical domain 
are adopted from general image retrieval schemes which 
perform satisfactorily with databases consisting of 
heterogeneous images of different modalities and 
anatomical regions.  

These systems use imprecise segmentation and 
feature extraction techniques which are not suitable for 
precise matching required for the retrieval of same 2D 
brain images (slices) in 3D volumes for diagnostic 
support. In one research  paper [28] has been reported to 
solve 2D slice retrieval problem.  In 2D form, for each 
pixel in an image, a binary code is produced by 
thresholding its value with the value of a center pixel. A 
histogram is then generated to calculate the occurrences 
of different binary patterns [29]. 
 

VI. MEDICAL APPLICATIONS OF CONTENT 
BASED IMAGE RETRIEVAL 

Image registration is the process of overlaying two or 
more images of the same scene taken at different times, 
from different viewpoints, and/or by different sensors. 
Image registration is a crucial step in all image analysis 
tasks in which the final information is gained from the 
combination of various data sources, like in image fusion, 
change detection, and multichannel image  restoration 
[30].  

Table 2 lists several image retrieval systems proposed 
for various medical departments. Although content-based 
image retrieval has frequently been proposed for use in 
medical image management, only a few content-based 
retrieval systems have been developed specifically for 
medical images [31]. 

 
Table 2. Various image types and respective retrieval systems 

 

Name/Feature Imaging Modality Domain 
QBISM / intensity-based MRI/PET Brain 
FICBDS / Physiological 

information based Functional PET Brain 

MIMS / ontology based All All 
MIRAGE / 3D texture based MR Brain 

Knowledge based All All 
ILive modality based All All organs 

2D Texture based MR Heart 
3D PET / lesion based PET Brain 

Predefined semantic based CT Brain 
 

A. ASSERT 
ASSERT or Automatic Search and Selection Engine 

with Retrieval Tools were developed by Indiana 
University in USA. The ASSERT system extracts 255 
features: textures, shape, edges, and gray scale properties 
in pathology bearing regions. 
 
B. 3D PET/CT 

3D PET/CT Fusion supports the effective 
interpretation with whole body FDG oncology studies 
and real-time interaction with PET, CT and fused 
volumes. It enables radiologists to accurately and 
efficiently blend PET and CT studies to combine 
anatomical and functional images for rapid lesion 
analysis and characterization. 3D allows you to separately 
license the advanced visualization and analysis tools you 
need on a routine basis (Figure 5). 
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Figure 5. The 3D PET/CT image retrieval system 
 
C. MIRAGE 

MIRAGE (Figure 6) is an on line learning system on 
medical informatics. With the server located at 
Middlesex University  in the UK, the system at present 
accommodates over 100,000 2D and 3D images and 
facilitates  domain-based (top-right), atlas-based (bottom-
left), and content-based  retrieval for both 2D and 3D 
images (bottom-right) [32]. 
 

 
 

Figure 6. The MIRAGE image retrieval system 
 
D. MedGift 

MedGIFT is a Grid infrastructure for medical imaging 
applications at the University Hospital in Geneva (HUG). 
MedGIFT is a project for analyzing medical images using 
the GIFT (GnuImage Finding Tool) software. The 
medGIFT retrieval system extracts global and regional 
color and texture features, including 166 colors in the 
HSV color space, and Gabor filter responses in four 
directions each at three different scales [31]. 
 

VII. CHALLENGES IN MEDICAL IMAGE 
RETRIEVAL 

Some of the major challenges in the area of medical 
image retrieval are outlined as follows: 
1. Application of CBIR in medical domain is useful. 
2. Extraction of robust and precise visual features from 
medical images is a difficult problem. 
3. The use of CBIR in medical diagnostics is important 
though it is difficult to realize. 

4. To be used as a diagnostic tool, the CBIR systems need 
to prove their performance to be accepted by the 
clinicians. 
5. In medical application domain many systems have 
been proposed where database consists of images of 
various anatomical regions with variety of image 
modalities (such as ImageCLEFmed database [33]). Such 
databases are useful as a benchmark to test various 
approaches in a general image retrieval framework; 
however these approaches are not useful for diagnostics 
support systems where high precision is required. 
6. Useful semantics for medical image retrieval needs to 
be established. 
 

VIII. CONCLUSIONS 
This paper has focused on the CBIR applications in 

diagnosis brain disease. The overall efficiency of MRI 
brain image retrieval can be improved by the usage of 
appropriate feature vectors. Nevertheless, certain efforts 
within the engineering community are worth noting. 
Content- based image retrieval of diagnosis brain disease 
has achieved a degree of maturity, albeit at a research 
level, at a time of significant need. However, the field has 
yet to make considerable attacks into mainstream clinical 
practice, medical research, or training. 
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