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Abstract- Reserve clearing is an important part of 
electricity markets and is done in both aggregated and 
disaggregated market. The amount of required reserve is 
determined by using either deterministic or probabilistic 
methods. In disaggregated market that energy and reserve 
are cleared separately, we have to optimize the total 
market cost. In this paper we propose a method to clear 
energy and reserve markets separately with considering 
probabilistic approach to determine sufficient amount of 
required reserve. We use dynamic multi-swarm particle 
swarm optimizer (DMS-PSO) to solve the proposed 
model. Constraint handling is based on penalty factors. 
The IEEE Reliability Test System - 1996 (RTS-96) with 
24 buses is used to examine the effectiveness of DMS-
PSO in solving problems.  
 
Keywords: Deregulation, Reserve Clearing, Reliability, 
Dynamic Multi-Swarm, Particle Swarm Optimization. 
 

I. INTRODUCTION 
In the last decade, deregulation and restructuring in 

power system improves the efficiency of power systems. 
Thus restructuring is increasing in many countries. In the 
deregulated power system, there are three main parts, 
generation companies (Genco), transmission companies 
(Transco), and distribution companies (Disco). One of the 
most important characteristics of deregulation is 
competitive environment that causes high efficiency. 
Some ancillary services such as reactive power are 
necessary for transmission of power and some are 
necessary for increasing the reliability and quality and 
safety of power systems [1].  

Spinning reserve (SR), non-spinning reserve, reactive 
power, voltage regulation and black start are some kinds 
of ancillary services. For supplying energy and ancillary 
services, there are two kinds of market framework in 
deregulated power system; aggregated framework and 
disaggregated framework. In aggregated framework 
market, energy market and ancillary services markets are 
cleared simultaneously; but in disaggregated framework 
they are cleared sequentially. Disaggregated framework 
has also two forms; sequential and simultaneous forms 
[2]. In the sequential form of disaggregated framework, 
after clearing energy market by market operator (MO), 

system operator (SO) will clear ancillary services 
sequentially such that an auction for the best quality 
ancillary service is carried out first followed by 
decreasing quality ancillary services auction [3].  

In the simultaneous form, all types of ancillary 
services are cleared simultaneously. This form is also 
known as rational buyer. Operating reserve is one of the 
most important ancillary services. In aggregated 
framework, we achieve higher social welfare than 
disaggregated one. This is one of the great advantages of 
aggregated framework but it acts as a “black box” in 
which justifying schedules and prices are very hard [2].  

Disaggregated framework sometimes has no feasible 
solution for reserve market because its available reserve 
is less than required reserve. This is because of the fact 
that when high ramp rate units are accepted in the energy 
market, they don’t have enough capacity to participate in 
the reserve market. Transparency in clearing energy and 
reserve market is one of the most important advantageous 
of disaggregated framework. In [4-6], an approach for 
procuring operating reserve has been presented using 
insurance theory. In [7], the generating units have been 
scheduled such that a given risk index is met. The optimal 
value of the risk index is determined using cost-benefit 
analysis. The concept in [7] has been applied to a 
traditional power system.  

In [8], using correlation between capacity and 
reliability, a scheme for procuring and pricing operating 
reserve in a deregulated environment has been proposed. 
A pool-based market clearing algorithm, which is based 
on the deterministic/probabilistic criterion for application 
in electricity market, has been introduced in [9]. In this 
context, the energy and reserve are simultaneously solved 
and units are committed such that loss of load probability 
(LOLP) or expected energy not supplied (EENS) is 
smaller than a predetermined value. Because energy and 
reserve markets are cleared simultaneously in this 
framework, like the aggregated framework, it acts as a 
black box and therefore it is very hard to identify 
schedules and costs.  

A security constrained economic dispatch for optimal 
reserve allocation and pricing has been formulated in 
[10]. In [10], a system has been divided into different 
control sub-areas where it is assumed that the amount of 
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reserve required in each sub-area is predetermined. Then, 
the optimal spot price of operating reserve has been 
calculated using the Lagrange multipliers. An integrated 
energy and spinning reserve market model has been 
presented in [11], in which market dispatch is carried out 
so that the total payment including both energy and 
spinning reserve and expected energy not served (EENS) 
is minimized. Reserve allocation in deregulated 
environments has been done in [12] using risk 
minimization approach. In [13], an approach for spinning 
reserve allocation considering reliability and cost in the 
deregulated environments has been proposed. 

In [14], the customers in a bilateral model have given 
the opportunity to purchase spinning reserve according to 
their needs using a well-being framework. In this 
proposed model, probabilistic method is used to 
determine the amount of required reserve. Either single 
risk criteria or multiple criteria, single risk criteria with 
system health probability, are used in well-being 
framework. After clearing energy market, the priority list 
is formed by combining all accepted units in energy 
market and then required spinning reserve, SR, is 
purchased from this priority list. In the case that there 
isn’t enough available SR in the priority list, generating 
units are rescheduled with a new constraint to increase 
available SR in the priority list by accepting more 
generating units.  

Rescheduling because of not enough available reserve 
in the priority list is one of disadvantages of this model. 
Also this model doesn’t warranty minimum reserve 
procurement cost. Because some units with low bids for 
energy that are accepted in energy market may have high 
bids for reserve. So, reserve procurement cost many 
increase by purchasing reserve among these units. 
Another disadvantage of this model is that units with high 
ramp rate are fully accepted in energy market and 
therefore they can’t be used in reserve market.  In [15], a 
method in disaggregated framework is proposed wherein 
energy and reserve market are cleared separately. This 
method has advantages of both aggregated and 
disaggregated framework; and also the total cost is less 
than disaggregated method. 

In this proposed method, the above problems are dealt 
with using some complementary considerations in reserve 
market clearing. In this manner, some units are backed 
down from their accepted values in the energy market and 
are participated in the reserve market. In this case, the 
backed down units are eligible to receive opportunity 
cost. Opportunity cost is paid to units that are backed 
down from the accepted values in the energy market and 
are participated in the reserve market with a capacity 
equal to their reduction in the energy market. Therefore, 
the payment for these units is the same as the units that 
are accepted in the reserve market. Due to the consistent 
balance between load and generation, the backed down 
portion of the accepted capacity in the energy market 
should be compensated by other units [15]. 

Therefore, in this proposed model some accepted units 
in energy market with high ramp rates and low bids of 
reserve are backed down from energy market and some 

others compensate backed down capacities in clearing 
reserve market. This is because of both achieving higher 
social welfare and providing required reserve. Therefore 
minimum SR procurement cost is warranted and there is 
always a feasible solution in reserve market. 
Deterministic method is used for determining required SR 
whereas determining SR by using probabilistic method is 
more convenient and has more advantageous. In this 
proposed method, the total cost is less than disaggregated 
method and always there is a feasible solution in reserve 
market. 

 For clearing this proposed method, a method for 
optimization would be needed. Recently, many 
evolutionary algorithms (EAs) were proposed for solving 
various nonlinear optimization problems such as 
simulated annealing (SA) genetic algorithms (GA) and 
ant colony optimization (ACO). Among them Particle 
swarm optimization (PSO) has shown a great 
effectiveness in solving optimization problem. It was 
introduced by Kennedy and Eberhart [16, 17]. PSO 
behaves similar to the behaviors of individual birds in a 
swarm when they are searching for food. In these 
behaviors, each individuals search a multidimensional 
space by moving in it. This Movement velocity of each 
individual is based on its present velocity, its own 
previous best performance, and the best previous 
performance of other individuals. PSO has considerable 
search performance in solving hard optimization 
problems with fast and stable convergence rates [18].  

PSO algorithm requires few parameters to be tuned, 
thus it is easily implemented [19]. There are two main 
variants, global PSO and local PSO. In the local version 
of the PSO, each particle’s velocity is adjusted according 
to its personal best position (pbest) and the best position 
(lbest) achieved so far within its neighborhood. The 
global PSO learns from the personal best position (pbest) 
and the best position (gbest) achieved so far by the whole 
population [20].  

In [21, 22, 23, 24, 25] different neighborhood 
structures were proposed. In [26] and [27] local PSO 
variants with multi-swarm and subpopulation were 
proposed respectively. In [28], a dynamic multi-swarm 
particle swarm optimizer (DMS-PSO) was proposed 
whose neighborhood topology is dynamic and 
randomized. DMS-PSO gives a better performance on 
multimodal problems than some other PSO variants [20]. 
The dynamic multi-swarm particle swarm optimizer was 
constructed based on the local version of PSO with a new 
neighborhood topology [28]. 

In [29], decomposition technique and PSO algorithm 
together are used to determine bid prices and quantities in 
a competitive power market. In [30], modified PSO 
algorithm is used in power system unit commitment. In 
[31], particle swarm optimization with improved inertia 
weight (PSO-IIW) is used to solve economic dispatch. 
Adaptive PSO in conjunction with simulated annealing 
are used to optimize the location of FACTs devices in 
[32]. In [33], optimization of the size and location of DGs 
is done with PSO algorithm.  
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In [34], a constrained PSO algorithm is proposed for 
solving generation and reserve dispatch problem in a 
competitive pool market with considering valve-point and 
multi-fuel effect and transmission constraints. In [35], a 
market clearing mechanism is proposed in which overall 
payment of energy, spinning reserve and interruption 
costs are minimized by PSO algorithm. In [36], like [15] 
energy and reserve markets are cleared by PSO algorithm 
in both aggregated and disaggregated frameworks. In 
other words, PSO algorithm is used to solve minimization 
problem in [36] instead of GAMS software in [15].in 
disaggregated framework , proposed model in [15] is 
used for clearing reserve market and results of  PSO 
algorithm are compared with obtained results of GAMS 
software in [15]. Like [15], deterministic method is used 
to determine required reserve. 

In this paper we want to examine the capability of 
DMS-PSO in solving the proposed method in [15]. 
Energy and reserve will be cleared by DMS-PSO in 
proposed disaggregated market in [15]. In contrast with 
[15], probabilistic method is used to determine required 
amount of reserve. Penalty factors are used to handle 
equality and inequality constraints of objective function. 
RTS-96 [35] with some assumptions is employed for 
simulation. 

 
 II. PROPOSED METHOD 

In this paper a new model is proposed in which energy 
and reserve markets are cleared separately by using 
proposed disaggregated framework in [15]. In contrast 
with [15], probabilistic method is used to determine 
required SR in this model. 

Both of energy and reserve market are based on 
rational buyer model. In rational buyer model, Gencos 
submit their energy and reserve bids curves along with 
their ramp rates and maximum available unit capacity to 
the market operator. Independent system operator (ISO) 
that is responsible for power market management 
determines overall desired system reliability level in the 
form of expected energy not supplied (EENS) according 
to desired reliability levels of Discos. 

The selection of specific values for the healthy state 
probability or risk depends on the desired degree of 
system well-being and the conditions under which the 
system is being operated. It is a managerial decision and 
depends largely on the degree to which the reliability 
level is required [14]. DisCos declare their desired 
reliability levels. Once the desired reliability levels 
associated with all DisCos are declared, the overall 
desired system reliability criterion is determined [14]. 
This implies that DisCos consequently contribute to the 
overall system desired reliability levels by choosing their 
own preferred reliability levels [14]. 

 As mentioned in [14], weighted average of Discos’ 
desired reliability levels can be considered as overall 
desired system reliability level. ISO calculates overall 
desired system reliability, overall desired EENS, by using 
submitted information of both Gencos and Discos; and 
then clears energy and reserve markets.  

 

Therefore, in our proposed model, in first step, energy 
market is cleared such that its procurement cost is 
minimized. After that, capacity outage probability table 
(COPT) is formed by combating all accepted unit in 
energy market and EENS is determined. Then, spinning 
reserve market clearing procedure is begun. In each 
iteration of this procedure, required spinning reserve 
increases 1 MW and reserve market is cleared by using 
proposed disaggregated spinning reserve market in [15] 
such that its procurement cost is minimized.  

After clearing reserve market with this amount of 
increased required  spinning reserve, COPT is reformed 
by combining all accepted units in both energy and 
reserve markets and then the new amount of EENS is 
determined. This procedure, e.g. increment of system’s 
required spinning reserve and resave market clearing with 
this amount of required spinning reserve, continues until 
system’s EENS becomes less than desired EENS.  

In other words, when calculated system’s EENS 
becomes less than desired EENS, increase in required 
spinning reserve stops. Thus, we are deal with two 
optimization problems, e.g. minimization of procurement 
costs of both energy and spinning reserve in energy and 
reserve markets clearing that introduced DMS-PSO in 
[28] is used to solve these two optimization problems. 
Therefore, DMS-PSO is used to clear both energy and 
reserve markets. 

In next section, after description of market-clearing 
procedure, the formulation of proposed disaggregated 
market in [15] is also introduced. 

  
 III. MARKET CLEARING PROCEDURE 

As mentioned before, market-clearing procedure is 
as follows: 
1) Energy market clearing: Energy market is cleared in 
such a way that energy procurement cost is minimized. 
2) Determination of ten-minute available reserve: 
Maximum available reserve that each unit can deliver in 
ten minutes is limited by both its ramp rate and its 
accepted capacity in energy market. 
3) Formation of COPT in order to determine EENS: 
COPT is formed by using outage replacement rate (ORR) 
of units that are accepted in energy market; and then 
EENS is determined. 
4) Reserve market clearing with increased required 
reserve: Required reserve increases 1MW more than its 
previous value and reserve market is cleared again with 
this new amount of required reserve. 
5) Determination of new EENS: COPT is reformed by 
combining all accepted units in energy and reserve 
markets, and then new EENS is determined. 
6) Continuation of required reserve increment until 
reaching desired EENS: Required reserve increment, 
reserve market clearing and determination of new EENS 
continue until calculated EENS becomes less than desired 
EENS. 

Proposed model flowchart for energy and reserve 
market clearing is depicted in Figure 1. Some of these 
steps and also its associated formulation are described in 
the following sessions. 
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Figure 1. Market clearing flowchart 
 

A. Energy Market Clearing 
Energy market is cleared in such a way that energy 

procurement cost becomes minimized. Thus we deal with 
an optimization problem that minimizes energy 
procurement cost. Market operator clears energy market 
by using Gencos’ submitted information such as unit’s 
offer curves for energy and their maximum capacities. 
Energy market objective function that should be 
minimized in energy market is as follows: 

1

min ( )
N

i i
i

EP P

  (1) 

subject to 

,min ,max
1

load          
N

i i i i
i

P P P P


    (2)         

where EPi(Pi), which denotes energy bid of ith generating 
unit. N is the number of generator and Pi is energy 
generation of ith generator before clearing reserve 
market. Each generating company submits individual 
bidding blocks both for energy and reserve as follows: 

[ , ]           1, 2,...,

[ , ]          1, 2,...,

j j
i i ei

k k
i i ri

E BE j n

R BR k n



  (3)  

where j
iE  is the energy quantity offered by the ith 

generating company for the jth band, j
iBE   is the energy 

price offered by the ith generating company for the jth 

band, k
iR  is the capacity reservation quantity offered by 

the ith generating company for the kth band, k
iBR  is the 

capacity reserve price offered by the ith generating 
company for the kth band, ein  is the number of energy 

bid bands offered by the ith generating company, and rin  

is the number of reserve bid bands offered by the ith 
generating company. Energy price function can be a step 
function as expressed below: 

1

1 1

1

1 1
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i i i i i i i

j j
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j j
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 

 

 

 
 (4) 

where j
iE  is the energy quantity of the ith band and j

iBE  

is the energy price of the ith band that was offered by the 
generating unit. 
 
B. Determination of Ten-Minute Available Reserve 

Maximum available reserve that each unit can deliver 
in ten minutes, also is known as ten-minute available 
capacity, should be determined before clearing reserve 
market. This value is limited by both unit’s ramp rate and 
its accepted capacity in energy market. Maximum total 
reserve that can be supplied by system is equal to the 
summation of all units’ ten-minute available reserves. In 
order to determine available reserve of each unit, its 
residual capacity should be determined before. Residual 
capacity and available reserve of each unit are calculated 
according to the following equations: 

  max

i( ) min  , 10

i i i i

i i i

Residual Capacity ResCap P P

Available Reserve AR ResCap RR

 

   
 (5) 

where iRR  is the ramp rate of ith unit. 

 
C. Formation of COPT in order to Determine EENS 

After clearing energy market, EENS is determined to 
represent for system reliability level. COPT is formed by 
combining all accepted units in energy market, and then 
EENS is determined. As mentioned in [14], based on 
Markov model, each unit is represented by two states, e.g. 
operating state and failed state. The repair process is 
neglected in determining the time dependent probabilities 
of generating units [14]. The probability of the unit being 
in the failed state during a time period (TP) is known as 
outage replacement rate (ORR) and is expressed as 
follows [36]:  

.
(failed)

8760

TP
P ORR


   (6)  

In the market model used in this paper, the auction is 
assumed to be an hourly auction. The time period is 
therefore considered to be 1 hour [14]. Formation 
procedure of COPT by using units’ ORR and also 
determination procedure of EENS are described in [36].  

 
D. Reserve Market Clearing with Increased Required 
Reserve  

In this step, required reserve increases 1 MW more 
than its previous value and reserve market is cleared with 

Start

Energy market clearing  
with DMS-PSO 

Determination of ten-minute 
available reserve 

Determination of system  
risk by forming COPT 

Increment of required reserve and 
then reserve market clearing with 

DMS-PSO

Determination of new system  
risk by reforming COPT 

Calculated risk ≤ Desired 

End
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this new amount of required reserve.  Proposed 
disaggregated reserve market in [15] is used to clear 
reserve market.  As required reserve increases, EENS 
decreases and so system reliability level nears to the 
desired system reliability level. 

As mentioned before, after clearing energy market the 
maximum available reserve in the reserve market may be 
less than the required reserve. Thus, to overcome this 
problem and to achieve highest social welfare, some units 
are backed down from their accepted values in the energy 
market and are participated in the reserve market. In this 
case, the backed down units are eligible to receive 
opportunity cost. Opportunity cost is paid to units that are 
backed down from the accepted values in the energy 
market and are participated in the reserve market with a 
capacity equal to their reduction in the energy market. 
Therefore, the payment for these units is the same as the 
units that are accepted in the reserve market.  

Due to the consistent balance between load and 
generation, the backed down portion of the accepted 
capacity in the energy market should be compensated by 
other units [15]. Although backed down units are eligible 
for receiving opportunity cost, they shouldn’t be paid for 
their backed down capacities in the energy market, any 
more. Therefore, the cost of reserve market is the 
summation of the following cost minus reduction of 
energy payment associated to the backed down units. 
a) Reserve payment to the accepted units in the reserve 
market. 
b) Energy payment from those units that compensate 
backed down capacities. 
c) Opportunity cost payment for backed down units. 

Therefore, the cost of reserve market clearing that 
should be minimized in the reserve market is as follows: 

1 1

1 1

min ( , ) ( )

(( ), ) ( , )

N N

i i i i
i i

N N

i i i i i i
i i
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OC P P REP P P




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 

  

 

 
  (7)              
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1 1
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i i
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i i i
i i

i i i i

i i i i
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 

 

  

 
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   

 

   (8)  

In the following four sub sections, each terms of this 
objective function are described. 
1) Reserve payment: Delivering power in real-time is 
related to the contingency probability factor (CPF) [15]. 
The CPF is strongly related to the reliability of generating 
units [36]. In this paper, it is assumed that this factor is 
specified according to ISO’s experience, before. 
Therefore, ISO announces the CPF for GENCOs to 
consider this factor in their energy and reserve bidding 
for maximizing their profits before closing the market 
[15].  

The ( , )i iRP R   is the reserve payment (RP) to the ith 

generating unit with iR  is accepted capacity in the 

reserve market and with CPF equal to ρ.  Reserve cost 
function of each unit can be also a step function with only 
one step. Therefore ( , )i iRP R   has a following equation: 

( , ) ( ) ( )i i i i i i i i iRP R R BR EP P R EP P         (9) 

where iBR  is capacity reserve price of ith generating unit. 

2) Energy payment in the reserve market: iP  is the 

amount of energy that is accepted in the reserve market 
clearing in addition to iP  from the ith unit to compensate 

backed down capacities. ( )i iEP P  is the energy payment 

to the ith unit for generating higher than iP . This 

payment is calculated as follows: 
( ) ( ) ( )

subject to
i i i i i i i

i i

EP P EP P P EP P

P ResCap

   


 (10) 

3) Opportunity cost: iP  is the accepted value of the ith 

generating unit in the energy market after clearing the 
reserve market [15]. iP  was the accepted value of the ith 

generating unit in the energy market after clearing the 
energy market. So, iP  is equal to iP  for units that wasn’t 

backed down and iP  is less than iP  for units that was 

backed down. Thus, ( )i iP P  is the backed down 

capacity of the ith generating unit for participating in the 
reserve market. Units that are backed down participate in 
the reserve market with a capacity equal to their reduction 
in the energy market. So the payment to these units 
should be the same as the units that are accepted in the 
reserve market. As mentioned before, Reserve Cost 
function of each unit can be assumed to be a step function 
with only one step. Thus as [15], the opportunity cost is 
assumed to be equal to the capacity reservation bid as 
follows: 

(( ), ) ( ) ( ) ( )

subject to

i i i i i i i i i i

i i

OC P P P P BR EP P EP P

P P

         



(11) 

4) Reduction of energy payment in the reserve market: 
( , )i i iREP P P  is reduction of energy payment of ith 

generating unit. As mentioned before, when the ith 
generating unit was backed down energy payment to this 
unit should be reduced as follows: 

( , ) ( ) ( )i i i i i i iREP P P EP P EP P   (12) 

Constraint (8) denotes that provided reserve in reserve 
market, summation of backed down capacities and 
accepted reserve capacities, should be equal to required 
reserve. Also constraint (8) says that summation of 
backed down capacities should be equal to summation of 
compensated capacities. Summation of backed down 
capacity and accepted reserve capacity of ith unit should 
be less than or at last equal to ten minutes reserve of that 
unit. We use deterministic criteria like [15] in 
determining reserve requirements. 
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E. Determination of New EENS  
In this step, after 1 MW increment of required reserve, 

COPT is reformed by combining all accepted units in 
energy and reserve markets; and then new EENS is 
determined from COPT. As mentioned before, formation 
of COPT by using units’ ORR and also determination of 
EENS are described in [36]. 

  
IV. ORIGINAL DMS-PSO  

Particle swarm optimization (PSO) was proposed by 
Kennedy and Eberhart in 1995 [16, 17]. PSO is a 
stochastic global optimization method which is inspired 
by the emergent motion of a bird flock when they are 
searching for food. Scientists found that in other to find 
food, each bird determined its velocity by two factors, its 
own best previous location and the best location of all 
other birds. In PSO there are a number of individuals 
called particles that constitute a population called swarm. 
Each particle represents a potential solution for the 
optimization problem and moves in search space and 
looks for global minimum. As said before, there are two 
main variants for PSO, global PSO and local PSO. In the 
global PSO, each particle’s velocity is adjusted according 
to its personal best position (pbest) and the best position 
(gbest) achieved so far by the whole population; whereas 
in the local version of the PSO, each particle’s velocity is 
adjusted according to its personal best position (pbest) 
and the best position (lbest) achieved so far within its 
neighborhood as follows: 

 
 

, , 1 1 , ,

2 2 , ,

. . . .

. . .

i d i d i d i d

i d i d

v v c r pbes t x

c r lbes t x

   

 
 (13) 

where lbesti=(lbesti,1, …, lbesti,D) is the best position 
achieved within ith particle’s neighborhood and  
Pbesti=(pbesti,1, …, pbesti,D)  is ith particle’s previous 
best location. 

 The dynamic multi-swarm particle swarm optimizer 
(DMS-PSO) was constructed based on the local version 
of PSO with a new neighborhood topology that is 
dynamic and randomized. As reported in [21, 22], PSO 
with small neighborhoods performs better on complex 
problems. So, in the DMS-PSO, small neighborhoods are 
used in order to slow down convergence speed and to 
increase diversity; therefore better results are achieved in 
multimodal problems. 

 In DMS-PSO, The population is divided into small 
sized swarms called sub-swarm. Each sub-swarm 
searches for better regions in the search space with its 
own members. These sub-swarms are searching using 
their own best historical information; so they easily 
converge to a local optimum because of PSO’s speedy 
convergence behavior. Also Because of maximum 
information exchange among the particles, the diversity 
of the particles is increased.   

In DMS-PSO, a randomized regrouping schedule is 
introduced to make the particles have a dynamically 
changing neighborhood structures. Therefore, every R 
generations, the population is regrouped randomly and 
then searches the search space using a new configuration 
of small swarms. R is called regrouping period. Thus, the 

obtained information by each swarm is exchanged among 
the swarms, and the diversity of the population is 
increased. DMS-PSO performs better on complex 
multimodal problems because of its new neighborhood 
structure. 

Procedure of regrouping the whole population into 
new swarms is shown in Figure 2. As can be seen, nine 
particles are divided into three swarms randomly in each 
regrouping period. This Procedure is continued until a 
stop criterion is satisfied.  

With the randomly regrouping schedule, particles 
from different swarms are grouped in a new configuration 
so that each small swarms search space is enlarged and 
better solutions are possible to be found by the new small 
swarms [28].  In the end of the search, in order to perform 
a better local search, all particles form a single swarm to 
become a global PSO version [28]. Flowchart of the 
original DMS-PSO introduced in [28], is also shown in 
Figure 3. As can be seen, we run original global PSO 
after regrouping phase of DMS-PSO.  

The ω is inertia factor that balance between global 
and local exploration. We damped this inertia factor 
linearly from ωmax to ωmin in DMS-PSO algorithm. As 
proposed in [28], we set ωmax and ωmin equal to 0.9 and 
0.2 respectively. 
  

 
 

Figure 2. DMS-PSO’s regrouping phase [28] 
 
The c1 and c2 are accelerations constants and it is 

found out that setting them equal to 1.49445 gets the best 
overall performance in regrouping phase of DMS-PSO; 
therefore, like some latter versions of DMS-PSO such as 
[20], we set them equal to 1.49445 in regrouping phase of 
DMS-PSO. The r1 and r2 are uniform value in the range 
[0,1]. The particle velocity is limited by maximum value, 
Vmax=(vmax,1, …, vmax,D) . It was set 20 % of range of the 
variable on each dimension.  

Except these common parameters, each swarm’s 
population size m and regrouping period R are set to 3 
and 5 respectively. As mentioned in [28], three particles 
achieve the balance between local and global search 
abilities, and the swarms show better global search ability 
[28]. Therefore, m=3 gives better performance for more 
complex multimodal problems. Also, for most test 
functions the better results are achieved when R=5 [28]. 

Regroup 
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In original PSO, each particle adjusts its velocity 
towards its own previous best position (pbest) and the 
best previous position of whole swarm (gbest). When a 
particle discovers a better position than what has found 
previously, previous pbest will replace with this new 
position. The ith particle vector at tth iteration is 
represented as Xi=(xi,1, …, xi,D). Vi=(vi,1, …, vi,D) is the 
velocity vector of ith particle at the tth iteration . The 
velocity and position of each particle are updated with the 
following two equations.  

 
 

, , 1 1 , ,

2 2 , ,

. . . .

. . .

i d i d i d i d

i d i d

v v c r pbes t x

c r gbes t x

   

 
 (14) 

 , , ,i d i d i dx x v   (15) 

 where gbest=(gbest1 ,…, gbestD) is the best position 
achieved so far by the whole population. Flowchart of the 
original PSO is also shown in Figure 4. Commonly, c1 
and c2 are set to 2 in order to get the best overall 
performance in global PSO.  
 

 
 

Figure 3. Flowchart of the original DMS-PSO  

V. CONSTRAINT HANDLING  
Generally, an objective function that we want to be 

minimized has some equality and inequality constraints 
as follows: 

   1min           ,..., nf X X x x  (16) 

subject to 

 
 

0           1,...,

0          1,...,

j

k

g X j q

h X k r

 

 
 (17)  

where q is the number of equality constraints and r is the 
number of inequality constraints. To handle these 
constraints, they are added to objective function with 
penalty factors and a new objective function is made as 
follows: 

    2

1

2

1

min max(0, ( ))

( )

q

j j
j

r

k k
k

F X f X Pn g X

Pn h X





   

 




 (18)  

This new objective function will be minimized by 
PSO algorithm. Pnj and Pnk are penalty factors that are 
chosen large number enough to minimize objective 
function. If they are chosen very large, minimum of 
objective function may not be occurred. 
 

 
 

Figure 4. Flowchart of the original PSO 
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VI. SIMULATION RESULT 
The IEEE Reliability Test System - 1996 (RTS-96) 

with 24 buses is used to examine the capability of DMS-
PSO in solving our proposed model. This system is 
shown in Figure 5. The system peak load is assumed to 
be 2850 MW. System characteristics such as load of each 
bus, number and type of units at each bus, size of units, 
MTTF of each unit, heat rate and incremental heat rate of 
each unit, and ramp rate of each unit are given in [35]. As 
proposed in [39] Updated fuel costs are used in the cost 
model of the generators to reflect recent prices in the 
energy market. The generator fuel cost listed in Table 1. 

The operating costs of each generator per hour are 
modeled with a quadratic function of the power as 
follows [37]:  

2( )i i iz P a bP cP    (19) 

The quadratic cost comes from two different 
contributions [37]: 1) operating and maintenance (O&M) 
costs and 2) fuel costs. We used The O&M linear cost 
coefficients provided in [40]. The O&M linear cost is as 
follows: 

( )OM i OM OM iz P a b P   (20)  

 
Table 1. Units’ characteristics [39] 

 

 U12 
(#6 Oil) 

U20 
(#2 Oil) 

U50 
(Hydro) 

U76 
(Coal) 

U100 
(#6 Oil) 

U155 
(Coal) 

U197 
(#6 Oil) 

U350 
(Coal) 

U400 
(Nuclear) 

Pmin (MW) 2.4 16 10 15.2 25 54.25 68.95 140 100 
Pmax (MW), Base (MVA) 12 20 50 76 100 155 197 350 400 
λ (per year) 2.98 19.5 4.42 4.47 7.30 9.13 9.22 7.62 7.96 
O&M: aOM ($/h) 13.7 0.685 0.001 86.8 97.0 124 112 180 228 
O&M: bOM ($/MWh) 0.9 5 0.001 0.9 0.8 0.8 0.7 0.7 0.3 
Fuel cost ($/MBtu) 5.5 10 0 1.5 5.5 1.5 5.5 1.5 0.60 
Fuel cost: a1 ($/h) 72.7 400 0 126 684 258 720 485 217 
Fuel cost: b1 ($/MWh) 55.7 125 0 15.2 42.9 11.6 47.9 11.2 5.35 
Fuel cost: c1 ($/MW/MWh) 0.328 0 0 0.0141 0.0527 0.00834 0.00717 0.00490 0.000276 
Cost: a=aOM +a1 ($/h) 86.4 401 0.001 213 781 382 832 665 445 
Cost: b=bOM +b1 ($/MWh) 56.6 130 0.001 16.1 43.7 12.4 48.6 11.9 5.65 
Cost: c= c1 ($/MW/MWh) 0.328 0 0 0.0141 0.0527 0.00834 0.00717 0.00490 0.000276 

 
Computation procedure of quadratic fuel costs for one 

plant from the provided measurements of power output 
and heat consumption in the original IEEE 24-bus RTS 
are described in [39]. This quadratic fuel costs for one 
plant is obtained as follows: 

2
1 1 1 1( )i i iz P a b P c P    (21) 

The operating cost coefficients, fuel cost coefficients, 
and O&C cost coefficients are listed in Table 1. Also, 
maximum output, minimum output, and failure rate of 
each unit are given in this table. We suppose that each 
unit bids for energy and reserve in three blocks and one 
block, respectively.  

In bidding for energy and in first block, each unit 
offers 30% of its capacity with a unique price that is 
equal to operating cost of this quantity of energy e.g. z 
(0.3Pmax); in second block, each unit offers another 40% 
of its capacity with a unique price that is equal to 
operating cost of this quantity of energy e.g. z (0.7Pmax); 
and in third block, each unit offers residual 30% of its 
capacity with a unique price that is equal to operating 
cost of this quantity of energy e.g. z(Pmax). In bidding for 
reserve, each unit offers all of its capacity with a unique 
price that is equal to operating cost of 40% of its capacity 
e.g. z(0.4Pmax). 

Units’ characteristics such as energy and reserve 
bidding block, ramp rates, and ORR are given in Table 2. 
We merge similar units to decrease total number of 
independent variable. Two cases are studied in this paper. 
In first case, transmission constraints are ignored, and in 
second case, test system is divided into two sub-areas, 
and transmission constraint between them is taken into 
account. These cases are studied in the following 
sections. 

 
 

Figure 5. Single line diagram of RTS-96 [37] 
 

In these cases we use DMS-PSO to minimize 
objective functions. We let c1=c2=2, m=3 and R=5. ω 
decreases from 0.9 to 0.2 with increasing iterations. In 
regrouping phase, we let c1=c2=1.49455, m=3 and R=5. In 
original global PSO phase, we let c1=c2= 2. ω decreases 
from 0.9 to 0.2 with increasing iterations. Vmax is set to 
20% of range of the variable on each dimension in both 
phases. Size of population is set to 300 and 450 in case 
one and two, respectively. Also, the number of iterations 
(Max_gen) is set to 2500 and 50000 in these cases. 
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Table 2. Test System Characteristics [15] 
 

Unit 
size 

Unit 
No 

Energy offer Reserve offer 
RR 

(MW/min)
ORR (f) Band 1 Band 2 Band 3 Band 1 

MW Price ($) MW Price ($) MW Price ($) MW Price ($) 
20 4 6 1181 8 2221 6 3001 20 1441 3 0.0022222 
76 4 22.8 587.40974 30.4 1109.4264 22.8 1518.0416 76 715.47066 2 0.0005102 

100 3 30 2139.43 40 4098.23 30 5678 100 2613.32 7 0.00083333 
197 3 59.1 3729.3034 78.8 7670.2877 59.1 10684.461 197 4706.2017 3 0.0010526 
12 5 3.6 294.41088 4.8 584.98368 3.6 812.832 12 365.63712 1 0.00034014 

155 4 46.5 976.63316 62 1825.5806 46.5 2504.3685 155 1182.859 3 0.0010417 
400 2 120 1126.9744 160 2048.6384 120 2749.16 400 1356.0656 20 0.00090909 
350 1 105 1968.5225 140 3874.6225 105 5430.25 350 2427.04 4 0.00086957 
50 6 15 0.016 20 0.036 15 0.051 0 0 0 0.0005102 

 
A. Case 1: One Area without Considering 
Transmission Constrains 

In this case, transmission constraint is ignored. The 
unconstrained objective function in energy market that 
should be minimized by PSO is as follows:  

2

1 1

min ( ) . load
N N

i i i
i i

EP P Pn P
 

 
   

 
   (22) 

where equality constraints were added to the cost 
function of energy market by penalty factor Pn. This 
penalty factor is set to 100000000 that is about twenty 
times of constrained objective function’s value. 

 As said before, we merge similar units to decrease 
number of state variable. Here, state variables are Pi for 
i=1-8 that DMS-PSO finds them in such a way to 
minimize above objective function. We assume that 
hydro units are fully accepted in energy market; therefore 
P9 is not a state variable. DMS-PSO algorithm was run 
five times and mean, standard deviation, and best of the 
results were given in Table 3. As can be seen, standard 
deviations of the results are equal to zero in each case. In 
Table 4, the best result of DMS-PSO e.g. minimum cost 
of energy market clearing was compared with result of 
GAMG. As can be seen, DMS-PSO can successfully find 
minimum of objective function as GAMS. Desired 
expected energy not supplied is assumed to be 0.78082 
MWh per hour. The proposed disaggregated market in 
[15] was used for achieving optimal solution in reserve 
market. The unconstrained objective function in reserve 
market is as follows:  

1 1

min ( , ) ( )
N N

i i i i
i i

RP R EP P
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    
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i i i i i i
i i

OC P P REP P P
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2

1
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i i i
i i
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 

 
       
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   

 
2

2
1 1

N N
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 
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where equality and inequality constraints are added to 
cost function of reserve market clearing by penalty 
factors Pn1, Pn2, Pn3, and Pn4. All penalty factors are set 
to 5000000 that are about ten times of constrained 
objective function’s value of reserve market. CPF is 
assumed to be 0.35. State variables are ΔPi and Ri for 
i=1-8 that DMS-PSO finds them in such a way to 
minimize above objective function. We assume that 
hydro units are fully accepted in energy market and don’t 
participate in reserve market; therefore ΔP9 and R9 is not 
a state variable. After finding ΔPi, iP

 
and iP

 
are 

calculated as follows:  

   min ,    ,   max 0,i i i i i iP P P P P P      (24) 

Required reserve is increased 1 MW and then reserve 
market is cleared with this increased value of required 
reserve in each iteration. DMS-PSO algorithm is run five 
times to clear reserve market with this increased value of 
required reserve and its best result, e.g. the result that has 
minimum cost for reserve procurement, is chosen as the 
answer of reserve market. When required reserve is 
increased to the 128 MW, EENS becomes less than 
desired EENS, e.g. about 0.7748 MWh. Therefore 
minimum system required reserve for achieving desired 
EENS is about 128 MW; whereas if we use deterministic 
criteria to determine required reserve such as ten percent 
required reserve criteria, we need 285 MW required 
reserve.  Reserve market is cleared with DMS-PSO for 
supplying this amount of reserve; DMS-PSO algorithm 
was run five times and mean, standard deviation, and best 
of the results were given in Table 3. The best answer of 
reserve market clearing with 128 MW required reserve is 
given in Table 5, and was compared with result of 
GAMG. As can be seen, DMS-PSO can successfully find 
minimum of objective function as GAMS. 
 
B. Case 2: Two Sub-Areas with Considering 
Transmission Constraint 

In this case we divide the original IEEE 24-bus RTS 
into two sub-areas and transmission capacity constraint 
between these two sub-areas is taken into account. 20, 76, 
and 100 MW Units belong to sub-area A and other units 
belong to sub-area B. In this case, the total load levels in 
A and B sub-areas are 1332 and 1518 MW, respectively. 
Required reserve in A sub-area is determined such that 
EENS of this sub-area becomes less than desired EENS 
whereas A sub-area and B sub-area are considered as 
assisted system and equivalent assisting unit respectively. 
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Similarly, required reserve in B sub-area is determined 
such that EENS of this sub-area becomes less than 
desired EENS whereas B and A sub-areas are considered 
as assisted system and equivalent assisting unit 
respectively, too.  

Required reserves in both A and B sub-areas increase 
1 MW more than their previous values and then reserve 
market is cleared with these new amounts of required 
reserves by using DMS-PSO.  After that, A sub-area 
EENS is determined whereas B sub-area acts as an 
equivalent assisting unit; and similarly, B sub-area EENS 
is determined whereas A sub-area acts as an equivalent 
assisting unit. Required reserve increment of each sub-
area continues until its EENS becomes less than desired 
EENS. Procedure of modeling an area as an assisting unit 
is described in [38]. 

Transmission capacity between two sub-areas is 
assumed to be 2400 MW. The unconstrained objective 
function of energy market that is minimized by DMS-
PSO algorithm is as follows: 

2

1
1

2

2 load
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.
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i i i load AB
i i A

i AB
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 

 
    

 

 


 (25) 

Penalty factors, Pn1 and Pn2, are set to 100000000 that 
is about twenty times of constrained objective function’s 
value of energy market. In this section, we also merge 
similar units to decrease number of state variable. State 
variables are Pi for i=1-8 and EAB that DMS-PSO finds 
them in such a way to minimize above objective function. 
We also assume that hydro units are fully accepted in 
energy market; therefore P9 is not a state variable.   

Like the previous case, DMS-PSO was run five times 
and mean, standard deviation, and best of the results were 
given in Table 3. In Table 6 the best result of DMS-PSO 
e.g. minimum cost of energy market clearing was 
compared with result of GAMG. As can be seen, DMS-
PSO can successfully find minimum of objective function 
as GAMS. Because energy procurement cost in B sub-
area is cheaper than A sub-area, 738 MW energy flows 
from B sub-area to A sub-area. Desired EENS for A and 

B sub-areas are assumed to be 0.3649 and 0.4159 MWh 
per hour, respectively in this case. The non-constrained 
objective function of reserve market can be minimized 
with DMS-PSO and expressed as following: 
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Equality and inequality constraints are included in 
non-constrained objective function with penalty factors 
Pn1 – Pn9.  These penalty factors are set to 22000000, 
20000000, 18000000, 16000000, 14000000, 26000000, 
24000000, 10000000, and 12000000, respectively that are 
about ten to twenty times of constrained objective 
function’s value of reserve market. 

 
Table 3. Cases’ Results 

 

Case  Mean Standard Deviation Minimum Number of Iterations 

1 
Energy Cost($) 5670871.8539 0 5670871.8539 2500 
Reserve Cost($) 577957.8608 0 577957.8608 50000 

2 
Energy Cost($) 5670871.7802 0 5670871.7802 2500 
Reserve Cost($) 1231600.1089 0 1231600.1089 50000 

 
Table 4. Energy market clearing result without considering transmission constraints 

 

System load  
(MW) 

Unit 
size 

PSO GAMS 
Pi ResCapi ARi Energy cost ($) Pi ResCapi ARi Energy cost ($) 

2850 20 20 0 0 5670871.8539 20 0 0 5670871.9276 
 76 76 0 0  76 0 0  
 100 70 30 7  70 30 7  
 197 68.95 128.05 3  68.95 128.05 3  
 12 12 0 0  12 0 0  
 155 155 0 0  155 0 0  
 400 400 0 0  400 0 0  
 350 269.15 80.85 4  269.15 80.85 4  
 50 50 0 0  50 0 0  
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Table 5. Reserve market clearing result using the proposed method without considering transmission constraints 
 

System 
load  

(MW) 

System 
Reserve  
(MW) 

Unit 
size 

PSO GAMS 

Pi
’ Ri -i iP P  Reserve cost ($) Pi

’ Ri -i iP P  Reserve cost ($) 

2850 128 20 0 0 0 577957.8608 0 0 0 577959.6600 
  76 0 0 0  0 0 0  
  100 2.3e-13 29.3332 0  0 30,30,28 a 0  
  197 0 0 2.66e-13  0 0 0  
  12 0 0 0  0 0 0  
  155 0 0 0  0 0 0  
  400 0 0 0  0 0 0  
  350 0 39.9998 0.00027149  0 40 0  
  50 0 0 0  0 0 0  

        a. Three similar 100 MW units have 30, 30, and 28 MW reserve, respectively.

Table 6. Energy market clearing result with considering transmission constraints 
 

Sub-area load  
(MW) 

Unit 
size 

PSO GAMS 
Pi ResCapi ARi Energy cost ($) Pi ResCapi ARi Energy cost ($) 

1332 20 20 0 0 5670871.7802 20 0 0 5670871.9276 
 76 76 0 0  76 0 0  
 100 70 30 7  70 30 7  

1518 197 68.95 128.05 3  68.95 128.05 3  
 12 12 0 0  12 0 0  
 155 155 0 0  155 0 0  
 400 400 0 0  400 0 0  
 350 269.1499 80.8501 4  269.15 80.85 4  
 50 50 0 0  50 0 0  

 
Table 7. Reserve market clearing result using the proposed method with considering transmission constraint 

 

Sub-area 
Reserve 
(MW) 

Sub-area 
EENS 

Unit 
size 

PSO GAMS 

Pi
’ Ri -i iP P  Reserve cost ($) Pi

’ Ri -i iP P  Reserve cost ($) 

1332 7.8e-6 20 0 0 4 1231600.1089 0 0 0,4,4,4b 1233128.9469 
  76 0 0 4e-14  0 0 0  
  100 1.3e-5 30 0  0 30 0  

1518 0.4141 197 20.3831 1.1e-13 2.66e-13  29.1,16.025,16.025a 0 0  
  12 0 0 9.7e-17  0 0 0  
  155 0 0 21.4999  0 0 0  
  400 0 0 4.3e-14  0 0 0,90 c  
  350 40.8501 40 0  40.85 40 0  
  50 0 0 0  0 0 0  

    a. Three similar 197 MW units compensate 29.1, 16.025, and 16.025 MW of backed down capacity, respectively. 
    b. Four similar 20 MW units backed down 0, 4, 4, and 4 MW, respectively.
    c. Two similar 400 MW units backed down 0 and 90 MW, respectively. 

Because transmitted energy from B sub-area to A sub-
area is assumed as a firm purchase, and also units in A 
sub-area have high reliability, some reserve is required 
for achieving desired EENS in this sub-area. Whereas, if 
we use deterministic criteria to determine required 
reserve such as ten percent required reserve criteria, we  
will need 133.2 MW and 151.8 MW required reserve for 
A and B sub-areas, respectively; that causes A sub-area to 
have reserve more than its required reserve and B sub-
area to have reserve less than its required reserve.  

We merge similar units to decrease number of state 
variable. Therefore, State variables are EAB, RAB, ΔPi and 
Ri for i=1-8 that DMS-PSO finds them in such a way to 
minimize above objective function. Similarly, we assume 
that hydro units are fully accepted in energy market and 
don’t participate in reserve market; therefore ΔP9 and R9 
are not state variables. DMS-PSO is run five times to 
clear reserve market with increased required reserves of 
B sub-area; and its best result, e.g. the result that has 
minimum cost for reserve procurement, is chosen as the 
answer of reserve market clearing. When required 

reserves in A and B sub-areas increase to 6 and 226 MW 
respectively, their EENS becomes less than their desired 
values. 

 
 

Figure 6. The gbest’s convergence graph of best answer of DMS-PSO 
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DMS-PSO was also run five times to clear reserve 
market with these required reserves of A and B sub-areas; 
and mean, standard deviation, and best of the results were 
given in Table 3. The best result of DMS-PSO e.g. 
minimum cost for reserve procurement is compared with 
result of GAMG in Table 7; and its convergence graph is 
illustrated in Figure 6. As can be seen, DMS-PSO has 
found minimum of objective function better than GAMS 
has. However, we don’t merge same units when solving 
our problems with GAMS.  

 The maximum available reserve in both sub-areas is 
220 MW, which is less than summation of required 
reserves in these sub-areas e.g. 232 MW; therefore, there 
is no feasible solution without using the proposed 
disaggregated method in [15] for reserve market clearing. 
For supplying this amount of required reserves with 
minimum cost, some units with low reserve bid e.g. 20 
MW units and 155 MW units are backed down about 102 
MW; and, 197 MW units and 350 MW unit compensate 
this backed down capacity. 100 MW units and 350 MW 
unit supply last 130 MW of required reserve. In contrast 
with energy market, because reserve procurement cost in 
A sub-area is cheaper than B sub-area, 100 MW reserve 
capacity of B sub-area is provided from A sub-area to 
minimize reserve procurement cost. 

 
VII. CONCLUSIONS 

In this paper DMS-PSO was used to solve energy and 
reserve market in disaggregated framework with 
considering probabilistic method in determining the 
amount of system required reserve. Proposed method in 
[15] is used to clear energy and reserve market. In this 
proposed method, some units with high ramp rates are 
backed down from energy market and participate in 
reserve market to both supply required reserve and 
minimize reserve procurement cost. Because probabilistic 
method is more convenient than deterministic method, in 
contrast with [15], probabilistic method was used for 
determining system required reserve. We studied two 
cases; with and without considering transmission 
constraint. In each case, we had several equality and 
inequality constraints that were added to the objective 
function with penalty factors. RTS-96 was used for 
simulation. DMS-PSO not only successfully found the 
minimum of objective function as well as GAMS in each 
case, but also it has found better result than GAMS in last 
case. Therefore DMS-PSO has high performance in 
solving mixed integer programming (MIP) problem. It 
has simple concept and can easily be implemented. DMS-
PSO can find global optimum even if there are many state 
variables and constraints. It found our global minimum in 
each case study as GAMS. So, we can simply use DMS-
PSO in optimization problem instead of mathematical 
algorithms and other heuristic optimization problem such 
as GAMS software. 
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