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Abstract- Intensity inhomogeneity is a smooth intensity 
change inside originally homogeneous regions. The 
intensity inhomogeneity degrades performance of image 
processing algorithms. Intensity inhomogeneity 
correction methods are important image processing 
algorithms which are used to reduce the inhomogeneity. 
Brain image intensity inhomogeneity correction is one of 
the most important parts of clinical diagnostic tools. 
Brain images mostly contain inhomogeneity. Therefore, 
accurate process of brain images is a very difficult task. 
However, accurate process of these images is very 
important and crucial for a correct diagnosis by clinical 
tools. A review of intensity inhomogeneity correction 
methods for brain MRI images is presented. The review 
covers methods for intensity inhomogeneity correction 
and their comparative evaluations based on reported 
results.  
 
Keywords: Inhomogeneity Correction, Brain, MRI, 
Image Segmentation. 
 

I. INTRODUCTION                                                                         
Generally, researchers consider intensity 

inhomogeneity as a smooth spatially varying intensity 
inside originally homogeny regions. They consider 
inhomogeneity as multiplicative or additive field. In 
addition, they consider inhomogeneity independent of 
noise and model image with inhomogeneity as 
multiplicative of image and inhomogeneity field plus 
noise. Inhomogeneity is one of obstacle for automatic 
image processing applications such as image 
segmentation [1-4]. Usually, Inhomogeneity correction 
methods categorized as follow: 

Phantom based method is used to estimate device-
induced inhomogeneity field. It estimate inhomogeneity 
field by taking image of a uniform phantom and 
subtracting smoothed result image from original image of 
phantom. Usually, researchers use image of oil or water 
as phantom and use median filter for smoothing. 
Multicoil method combines surface and body coil images. 
Usually, body coil has low inhomogeneity but poor SNR 
and surface coil is vice versa. Therefore, multicoil 
produces image with high SNR and low inhomogeneity 
[5]. This method estimates inhomogeneity field by 
dividing the filtered surface coil image on the body coil 
image. Afterwards, the result is smoothed.  

Special sequences consider device-induced 
inhomogeneity. For certain pulse sequences, 
inhomogeneity can be calculated by estimating spatial 
distribution of the flip angle. Surface Fitting Methods 
estimate inhomogeneity field using image features which 
have information about inhomogeneity. These methods fit 
parametric surface to the mentioned features. Usually, 
intensity or gradient features are used in these methods. 
The methods, which use intensity, fit surface in one 
dominant tissue, then, they distribute obtained surface to 
all image. In [6], a surface fitting approaches for 
inhomogeneity correction is proposed namely the white 
matter (WM) which searches the parameters by fitting 
with respect to a set of user selected tissue points.  

Segmentation based methods: Segmentation of 
inhomogeneity corrected image is much easier and give 
better results. Inhomogeneity correction of image with 
segmentation in hand is very simple. These methods 
combine segmentation and inhomogeneity correction to 
benefit from each other. These methods are classified 
based on to the image segmentation method they use: 

Maximum-likelihood (ML) or maximum a posterior 
probability (MAP): ML or MAP may be used to estimate 
image intensity probability distribution. Usually, 
Gaussian mixture model is used and modified to 
incorporate inhomogeneity in clustering process [7]. The 
expectation-maximization (EM) algorithm can be used to 
estimate parameters of this model. In order to use EM 
algorithm for simultaneously segmentation and 
inhomogeneity correction, EM was modified to iterate 
between two processes. In [8], Wells proposed an 
inhomogeneity correction method  namely the 
expectation maximization (EM) which combines 
classification with inhomogeneity correction, and models 
the entire log-transformed bias field as the Gaussian 
distribution. Biased MAP (BMAP) [9] iterates two 
interdependent estimations: The MAP estimation of the 
image classification given an inhomogeneity estimation, 
and the ML estimation of the inhomogeneity given 
classification result of MAP.  

FCM based methods: The FCM is a soft fuzzy 
classifier. It allow a pixel belong to several classes and is 
robust against partial volume effect. Biased FCM 
(BFCM) [10] is representative of the fuzzy clustering 
MRI segmentation methods which adapt FCM object 
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function to consider inhomogeneity in clustering process. 
An adaptive FCM based inhomogeneity correction 
method is proposed [11] which updates objective function 
of FCM by multiplication centre of clusters by a function 
of location representing inhomogeneity. In order to 
preserve smoothness of objective function, a spatial 
regularization term is added to objective function which 
penalizes first and second derivatives of the 
inhomogeneity function. 

Nonparametric segmentation: These methods are 
more general and do not consider any prior knowledge 
about tissue distribution. These methods use intensity and 
second derivatives of intensity. These methods iteratively 
minimize inhomogeneity caused class error. In [12], an 
energy function is defined by incorporating smoothness 
constraints into the classification error function of the 
inhomogeneity corrected image. Gradient descent of this 
energy function relative to the inhomogeneity field is 
used for inhomogeneity estimation. This approach is 
called adaptive field rule (AFR). Also, several algorithms 
for estimation of the mean intensity of each tissue which 
is used in inhomogeneity estimation process are 
presented. One of these algorithms is using gradient 
descent of the energy function relative to the intensity 
class means for the intensity class means estimation. This 
algorithm is called AFR-U. 

Histogram Based Methods: These methods usually do 
not use a priori information about image and use 
histogram of image to estimate inhomogeneity. These 
methods do not produce segmentation result. Three 
histogram based inhomogeneity correction methods are 
reported in next paragraphs: 

High-Frequency Maximization methods: This method 
does not use any knowledge about image and iteratively, 
estimate inhomogeneity by maximizing the high 
frequency information of tissue distribution. This method 
assumes inhomogeneity as low frequency and image 
information as high frequency, and maximizes high 
frequency information. Therefore, it may eliminate low 
frequency information of image. In [13], a nonparametric 
none-uniform intensity normalization (N3) method is 
proposed which models inhomogeneity field as a 
Gaussian distribution with small variance to constrain the 
solution space. N3 estimates the inhomogeneity field by 
maximizing the frequency content of the image intensity 
distribution. 

Information Minimization: These methods consider 
inhomogeneity as extra information and minimizing 
information for inhomogeneity correction [14]. They use 
distribution entropy or log of it to measure information. 
In [15], a nonparametric coarse to fine approach is 
proposed which in each scale estimates inhomogeneity 
using entropy minimizing. If entropy in two scales does 
not change, interpolate inhomogeneity estimation to 
original scale.  

Histogram matching methods: In these methods, 
image is divided into sub volumes. These methods 
assume sub volumes have constant inhomogeneity and 
use histogram of image to initialize a finite Gaussian 
mixture model and fit the model to histogram of sub 

volume to estimate local inhomogeneity. The estimated 
local inhomogeneity is checked for outliers. At last, the 
result is interpolated to produce the final inhomogeneity 
field of input image. In [16], a histogram matching 
inhomogeneity correction method (called bfc) proposed 
which divides the image into small sections with 
relatively constant intensity inhomogeneity. In order to 
estimate local intensity inhomogeneity, the intensity 
histogram model (a finite Gaussian mixture) is fitted to 
the actual histogram of a section by least square fitting. 
The final inhomogeneity is produced by interpolation of 
local estimates in sections. 

Filtering Methods: These methods consider 
inhomogeneity a low-frequency artefact and use low-pass 
filter to inhomogeneity field detection [17].  If there were 
any low frequency image information, these methods 
might eliminate them. Other drawback of these methods 
is producing a streak artefact on edges known as edge 
effect which causes distortion of homogeneous tissues 
near the edges. Homomorphic filtering [18] and 
homomorphic unsharp masking (HUM) method are two 
most important filtering inhomogeneity correction 
methods. In homomorphic filtering, subtraction of log-
transformed of input image from log-transformed of its 
low-pass filtered is considered as corrected image [19]. 
Homomorphic filtering produces edge effect on boundary 
between tissues. Guillemaud proposed to apply filter just 
to object to reduce this artefact [20]. In homomorphic 
unsharp masking (HUM), the inhomogeneity correction 
field is obtained by low-pass filtering of the input image, 
divided by the constant to preserve mean or median 
intensity. In [21], mean filter is used as low-pass filter 
and the background are masked out from HUM input for 
reducing edge artefact. In [22], a algorithm namely eq 
uses multiplication in Fourier domain for low-pass 
filtering and uses average intensity value to replace 
background pixels from HUM input for reducing edge 
artefact. Also in [18], average intensity value replaces 
background pixels for reducing edge artefact. In [23], 
median filter is used as low-pass filter. Table 1 lists state-
of-art inhomogeneity correction algorithms. 
 

Table 1. Advantages and disadvantages of inhomogeneity correction 
methods 

 

Inhomogeneity 
correction method 

Advantages Disadvantages 

Phantom-based 
methods [19] 

These methods are 
simple. 

It just considers 
device-induced 
inhomogeneity.  
It is difficult to match 
the images of a 
phantom due to the 
coil profile temporal 
and spatial variation. 

Multi-coil 
methods [5] 

This method 
combines surface 
and body coil 
images resulting an 
image with high 
SNR and low 
inhomogeneity 

These methods take 
more time and do not 
totally remove 
inhomogeneity of 
body coil. 

Special sequences 
methods [19] 

These methods are 
useful in specific 
acquisition designs. 

These methods just 
consider device-
induced 
inhomogeneity. 
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II. COMPARATIVE STUDY 
The reported results for intensity inhomogeneity 

correction algorithms are presented. In order to 
investigate their effectiveness, the quantitative and 
qualitative results of the algorithms are presented. 
 
A. Simulated Images 

In [28], three inhomogeneity correction methods (the 
expectation maximization (EM) [8] , the white matter 
(WM) [6], and the N3 method [13]) are compared. EM 
iterates between classification and filtering stages. 
Filtering stage smoothes the field estimate and utilize a 
Gaussian filter with truncated kernel to remain within 
interested volume, WM, first, segment white matter using 
an artificial neural network classifier, then, removes 
partial volume voxels using gradient information.  

Afterwards, a smooth field is fit to the remaining 
white matter voxels and extrapolates this field to the rest 
of the volume. N3 iterates between estimating intensities 
of the corrected volume and smoothing the estimated 
volume. The N3 does not rely on explicit tissue 
classification. 

The methods are applied on phantom based T1, T2, 
and PD weighted data. The WM method outperforms 
competing methods on T1 weighted volumes. The high 
contrast between the WM and other tissues in T1 
weighted images could be the reason for superiority of 
WM method. The most stable performance in this 
experiment is for the N3 method. The voxels outside the 
classifier’s tissue model are corrected excessively by the 
expectation maximization method.  

In [29], six inhomogeneity correction algorithms, N3 
[13], bfc [16], SPM  [30], and low pass filter based  
methods (hum [21], eq  [22] and cma which is available 
in the Nautilos Library from the Center for Morphometric 
Analysis at the Massachusetts General Hospital) were 
compared. Of the compared methods: hum and cma filter 
image data in the spatial domain, while, eq filters in the 
frequency domain. The cma filters white matter and then 
extrapolating the estimated field to the whole volume. 

The bfc algorithm Normalize regional tissue intensity 
histograms to global values. The methods are applied on 
image volume from BrainWeb. The correlation of the 
extracted with the applied bias field is used to evaluate 
the methods. The N3 and the bfc methods outperform 
other competing methods.  

The bfc performs better than N3 at low 
inhomogeneity but worse than N3 at high inhomogeneity. 
The filtering based methods produce inhomogeneity field 
contains higher-frequency structures from brain. Also, 
contrary to N3 and bfc, the filtering-based methods are 
not adaptive and the filtering strength is not depended to 
data quality.  

In [31-33], adaptive filter based methods has been 
presented to overcome this problem. The SPM utilize the 
mixture Gaussian classifier, which could be inadequate to 
model the image intensity distribution. Moreover, at low 
inhomogeneity the spm method may be unstable. None of 
the methods produce ideal results under all situations 
(Table 2). 

  

Table 2. Advantages and disadvantages of inhomogeneity correction 
methods-continue 

 

Inhomogeneity 
correction method 

Advantages Disadvantages 

Surface Fitting 
Methods 
(intensity based) 
[24] 

These methods 
produce good 
results when pixels 
of a dominant tissue 
are distributed over 
the image and can 
be selected. 

These methods 
estimate the 
inhomogeneity field 
from one tissue and 
blindly distribute it 
over the image. 

Surface Fitting 
Methods 
(gradient based) 
[24] 

These methods 
yield good results 
when an image 
contains large 
homogenous areas. 

These methods assume 
there are distinctive 
and large 
homogeneous areas in 
image and may 
integrate unwilling 
image information.  

Maximum 
likelihood (ML) 
or maximum a 
posterior 
probability 
(MAP)-based 
methods [20] 

These methods 
combine 
segmentation and 
inhomogeneity 
correction. 
Therefore, they can 
improve each other. 

These methods can 
stack error of different 
iterations and need 
initialisation. 
 

FCM-based 
methods [11] 

These methods are 
more robust against 
partial volume 
effect. 

These methods do not 
produce good results 
in the presence of a 
high-level of noise and 
inhomogeneity. 

Nonparametric 
segmentation-
based methods 
(nonparametric 
max-shift or 
mean-shift 
clustering) [25] 

These methods are 
more general and do 
not consider any 
prior information 
about tissue 
distribution. 

These methods are 
expensive. 

High-Frequency 
Maximization 
methods 
(Histogram Based 
Methods) [19] 

This method does 
not use any 
knowledge about an 
image. 

They may eliminate 
low-frequency 
information of an 
image. 

Information 
Minimization 
methods 
(Histogram Based 
Methods) [26] 

They use only the 
information that is 
present in an image, 
without making 
assumptions on 
spatial and intensity 
distributions.  

They need a constraint 
to preserve contrast in 
image. 
The nonlinear log-
transformation of 
image intensities 
makes the numerical 
computation of 
entropy challenging. 

Histogram 
matching 
methods 
(Histogram Based 
Methods) [27] 

These methods need 
no initialisation and 
prior information 
making these 
methods fully 
automatic and 
general 

They assume that sub-
volumes of images 
have constant 
inhomogeneity. 

Filtering Methods 
(Homomorphic 
filtering and 
Homomorphic 
un-sharp mask) 
[26] 

They are simple in 
concept and fast. 

These methods might 
eliminate low-
frequency image 
information. 
They produce a streak 
artefact on the edges, 
known as the edge 
effect. 

 
In [34], a parametric intensity inhomogeneity 

correction algorithm namely GradClassLeg is applied on 
the image from BrainWeb corrupted by variant distortion 
(correlation between corrupted image relative to the 
original image).  
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The correlation between corrected images with the 
original image is used to evaluate inhomogeneity 
correction algorithms. GradClassLeg performance is 
compared with reported results for integrated 
segmentation and inhomogeneity correction algorithms 
(Wells [8], BMAP [9] and BFCM [10]). GradClassLeg 
outperforms the other algorithms. These results confirm 
that the gradient descent approach assumed by 
GradClassLeg is robust enough to estimate strong 
inhomogeneity fields. 

In [12], adaptive field rules for non-parametric MRI 
intensity inhomogeneity estimation algorithm (AFR and 
AFR-U) are compared with basic supervised Gaussian 
(BGAUSS) (the classification based on the classes means 
without bias correction)  on the image from BrainWeb 
corrupted with intensity inhomogeneities of magnitude 
20% and 40% of the original clean image. 

Dice similarity index for different methods in 20% 
are: BGAUSS (0.95, 0.88, 0.92), AFR (0.94, 0.89, 0.92) 
and AFR-U (0.94, 0.90, 0.94) and for 40% are: BGAUSS 
(0.91, 0.79, 0.85), AFR (0.89, 0.83, 0.90) and AFR-U 
(0.89, 0.85, 0.92). AFR-U outperforms competing 
algorithms and AFR has the second performance. The 
improvement of AF-U and AFR over BGAUSS are 
greater for the 40% inhomogeneity than for the 20% 
inhomogeneity.  

In [15], A nonparametric MRI inhomogeneity 
correction method is applied on the image from Brainweb 
corrupted by a realistic bias field from the Brainweb site 
with amplitudes ranging from 0% to 100% and Additive 
Gaussian noise from 0% to 10% of the maximum 
intensity in the volume. The proposed method based on 
intensity-gradient entropy was compared with two widely 
used inhomogeneity correction methods with their default 
parameters: N3 [13] and the bias correction method of the 
SPM2 software [35].  

The coefficient of variation (CV) was used for the 
methods comparison. The average CV value of different 
inhomogeneity correction methods for all the random 
noise and bias field amplitude levels was: SPM2 = 0.030 
± 0.020, N3 = 0.025 ± 0.017 and the proposed method = 
0.024 ± 0.016. The three methods provide well and 
almost similar performance in all situations. However, the 
proposed method outperforms competing methods on 
average. 

 
B. Real Images 

In [36], four inhomogeneity correction methods (a 
phantom method [37], two low pass filter methods [18, 
23], and a surface fitting method with reference points 
selected from white matter [6]) were evaluated in brain 
tumour segmentation. All competing methods outperform 
the surface fitting method which could be related to the 
way the reference points were generated.  

The inhomogeneity correction did not improve 
tumour assessment [36]. The tumour segmentation 
mostly is affected by the localization of the tumour region 
and the intensity contrast with surrounded tissue. Thus, 
the inhomogeneity has less effect on tumour 
segmentation. 

In [34], a parametric intensity inhomogeneity 
correction algorithm namely GradClassLeg is applied on 
20 normal images from IBSR. GradClassLeg 
performance is compared with reported results for 
integrated segmentation and inhomogeneity correction 
algorithms (Wells [8], BMAP [9], BFCM [10] and Siyal 
and Yu method [38]). The average Jaccard indexes are: 
Wells = 0.5655, BMAP = 0.56, BFCM = 0.67,           
Gred = 0.739 and Siyal and Yu = 0.737. The 
GradClassLeg algorithm provides results comparable to 
the best reported results. 

In [12], An adaptive field rule for non-parametric 
MRI intensity inhomogeneity estimation algorithm 
(Adaptive field rule) is applied on 20 normal images from 
IBSR. Adaptive field rule performance is compared with 
reported results from IBSR. Jaccard similarity index of 
this method for different images are: (0.61, 0.645, 0.715, 
0.6, 0.485, 0.735, 0.71, 0.54, 0.59, 0.455, 0.575, 0.5, 
0.585, 0.465, 0.54, 0.625, 0.6, 0.54, 0.495). The average 
Jaccard indexes are: 0.5715. The Adaptive field rule 
algorithm provides results comparable to the best 
reported results. 

In [15], A nonparametric MRI inhomogeneity 
correction method is applied on a set of 13 subjects with 
hepatic encephalopathy. The coefficient of variation (CV) 
for white matter and gray matter and the coefficient of 
joint variation (CJV) were used for the methods 
comparison. The average value of normalized CJV for 
different inhomogeneity correction methods was: the 
proposed method using intensity-gradient based entropy 
= 0.74 ± 0.09, proposed method with classic entropy       
= 0.98 ± 0.09, SPM2 = 0.97 ± 0.05 and N3 = 0.98 ± 0.04.  
The proposed method based on intensity-gradient entropy 
outperformed other competing methods in all cases.  

In [39], 20 normal images from IBSR are categorized 
in two groups: contaminated  and uncontaminated image 
volumes based on their quality.  The ten contaminated 
image volumes contain either the smooth intensity 
inhomogeneity, or rapid interslice intensity variation. A 
bias correction method is incorporated to remove 
contamination before image segmentation. N3 has 
virtually become the standard method against other 
inhomogeneity correction methods [19]. However, N3 
does not take the rapid inter-slice intensity variations into 
account. Therefore, not only N3 but also a 3-D wavelet-
based bias correction method [40, 41] is utilized which is 
useful for correcting not only the smooth intraslice 
inhomogeneity, but also the rapid interslice intensity 
variation.  

After inhomogeneity correction, a Gaussian mixture is 
applied on 10 contaminated images (1_24, 2_4, 4_8, 5_8, 
6_10, 7_8, 8_4, 15_3, 16_3, 17_3). Jaccard similarity 
index of contaminated images for different methods are: 
N3+ Gaussian mixtures (0.64, 0.512, 0.48, 0.49, 0.42, 
0.61, 0.535, 0.54, 0.51, 0.5) and wavelet + Gaussian 
mixtures (0.63, 0.665, 0.63, 0.51, 0.525, 0.57, 0.58, 
0.625, 0.625, 0.61). The average Jaccard indexes are:   
N3 + Gaussian mixtures = 0.525, wavelet + Gaussian 
mixtures = 0.595. 
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III. CRITERIA 
For evaluate inhomogeneity correction algorithms, 

two criteria, Jaccard similarity [19] and Coefficient of 
Joint variation (C) [14] commonly are used. The Jaccard 
similarity: The inhomogeneity corrected image is 
segmented, and then similarity is defined as follow: 

| ' |( , ')
| ' |
S SJ S S
S S
∩

=
∪

  (1) 

where S  is a tissue in segmented image and 'S  is the 
same tissue in ground truth.  

The higher similarity produces better inhomogeneity 
correction. In this research, average of Jaccard similarity 
for tissues is used to evaluate different algorithms as 
follow: 

1 2 3 1 1 2 2 3 3( , , ) ( ( , ') ( , ') ( , ')) / 3J S S S J S S J S S J S S= + +  (2) 
Coefficient of Joint Variation (C): Grey n-

homogeneity increase in-tissue variation. Inhomogeneity 
correction should decrease grey variation as much as 
possible. In order to calculate in-tissue grey variation, C 
is defined as follow: 

1 2 3( , , ) /C C C C V M=  (3) 
where V and M are joint variance and mean of tissues, 
respectively. They are defined as follow: 

1 2 3( ) ( ) ( )V C C Cσ σ σ= + +  (4) 

1 2 3( ) ( ) ( )M C C Cμ μ μ= + +  (5) 
where σ , μ  and Ci represent variance, mean and ith 
tissue, respectively. The lower value of C shows better 
inhomogeneity correction. 

In high neighborhood size, some inhomogeneity 
correction algorithms produce image with zero contrast. 
The C doesn’t consider contrast between tissues. In order 
to overcome this shortcoming, the C is modified as 
follow: 

1 2 1 3

2 3

1 2 3

| ( ) ( ) | | ( ) ( ) |
| ( ) ( ) |

( , , )
.contrast

Contrast C C C C
C C

VC C C C
M Contrast

μ μ μ μ
μ μ

= − + − +

+ −

=

 (6) 

 
IV. DATABASES FOR INHOMOGENEITY 

CORRECTION ALGORITHMS VALIDATION  
 
A. BrainWeb  

BrainWeb (www.bic.mni.mcgill.ca/brainweb), a 
synthetic image database has been developed by the 
McConnell Brain Imaging Centre of the Montreal 
Neurological Institute (MNI). A manually segmented 
head image passes through an MR simulator to produce 
the synthetic images. MR simulator allows producing 
synthetic images with different levels of noise and 
intensity inhomogeneity. At first version, Brainweb 
provided two anatomical models, one of a normal brain 
and the other of a brain with multiple sclerosis lesions. 
The ground truth (manual) segmentation has nine normal 
tissue classes. Additionally, it has partial-volume content 
levels for each image pixel. Recently, other twenty 
normal models have been added. Currently added models 
have 11 normal tissue classes [42, 43].  

B. The Internet Brain Segmentation Repository 
(IBSR) 

The Center for Morphometric Analysis (CMA) at the 
Massachusetts General Hospital (MGH) provides the 
Internet Brain Segmentation Repository (IBSR) 
(www.cma.mgh.harvard.edu/ibsr/), an on-line database of 
head MR images of more than 40 subjects along with 
truth model for segmentation. Truth models for some of 
MR images have 43 individual structures and for others 
have three tissue classes, gray matter (GM), white matter 
(WM), and cerebrospinal fluid (CSF).  
 
C. Section for Biomedical Image Analysis (SBIA)  

For generating simulated inter-subject head 
deformations, software has been developed by the 
Section for Biomedical Image Analysis (SBIA) in the 
department of Radiology at the University of 
Pennsylvania (www.rad.upenn.edu/sbia/). Xue et al. [44] 
used these simulated inter-subject head deformations for 
validation studies of atlas-based segmentation methods. 

 
V. CONCLUSIONS 

Inhomogeneity degrades medical dignosis tools 
results. Inhomonegeity correction is a neccessary stage to 
improve the accuracy of these tools. This field is a 
research area for many decades and lots of research has 
been done in this area. In this paper a critical review of 
inhomogeneity correction methods for brain images is 
presented. This paper review recent works in this area. 
Also, this paper presents Advantages and disadvantages 
of inhomogeneity correction methods. Moreover, the 
paper presents comparative study of these methods.  
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