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Abstract- As we know, the main subject of the economic 
dispatch is allocated for generator production. We must 
consider all limitations and economical mode and 
network operation. Power usages are organized in their 
efforts towards network utilization with high efficiency 
generation and low costs. Economic dispatch (ED) in 
large scale systems is completely complex non-linear 
problem and it is required by non-convex optimization. 
Global optimization methods can be named such as 
genetic algorithms (GA), particle swarm optimization 
algorithms (PSO), Taguchi algorithms and optimal power 
flow (OPF). In this paper, methods (PSO-OPF) are 
explained for ED with PSO and then for ED with OPF. 
Evolutionary strategies are used in recent decades due to 
their powerful search capabilities and their ability to 
influence the different types of cost functions, a growing 
number of researchers to solve problems by spreading 
economic partner, GA and PSO are implemented more in 
comparison with other methods and the number of 
articles that have been published in recent years. 
Heuristic optimization techniques are receiving great 
interests these days. Swarm intelligence (SI) is a type of 
heuristic optimization techniques.  
 
Keywords: Economic Dispatch, Particle Swarm 
Optimization, Optimal Power Flow. 
 

I. INTRODUCTION 
In this paper the attention centers on economic 

dispatch with comparing the Particle Swarm 
Optimization (PSO) method and Optimal Power Flow 
(OPF) method. Economic dispatch problem has become a 
crucial task in the operation and planning of power 
system. Particle swarm optimization has been used to 
solve many optimization problems. In PSO, each particle 
moves in the search space with a velocity according to its 
own previous best solution and its group’s previous best 
solution [13].  

The original PSO described low is basically 
developed for continuous optimization problem. The 
objective of an Optimal Power Flow (OPF) method is to 
find steady state operation point which minimizes 
generation cost, losses, etc. or maximizes social welfare, 

load ability etc. Traditionally, classical optimization 
methods were used to effectively solve OPF. In recent 
years, Artificial Intelligence (AI) methods have been 
emerged which can solve highly complex OPF problems 
[10]. 

In section II, the concept of PSO is introduced. It 
presents the features and functions of PSO, and 
foundation so as to give a general picture of PSO. In 
section III, the economic dispatch with using PSO will be 
described and summarized for power systems 
respectively. In section IV the case study 1 and case study 
2 which including 3 buses and 26 buses IEEE model is 
shown. The final results of the comparisons of algorithm 
are based on OPF, PSO are also presented. The 
conclusions are presented in section V.  
 

II. FOUNDATIONS BY USING PSO METHOD 
Particle swarm optimization (PSO) is a population 

based on computational technique inspired from the 
simulation of social behavior of flock of birds. PSO was 
originally designed and developed by Eberhart and 
Kennedy [16]. A newer version was introduced in 1998 
by incorporating inertia weight.  

In the group of the particles, the optimization problem 
is the same answers and they are scattered randomly in 
the search space. The position of these particles, which 
refers to their swarms, is collected from one another. The 
particles positions are updated by using their experiences 
and the experiences of neighboring particles. However 
PSO tries to find the optimal solution to the problem by 
moving the particles and evaluating the fitness of the new 
position. This update is done by the particle velocity 
vector [19].  

The position vector and velocity vector of ith particle 
in a d-dimensional search space are expressed as follows 
[17, 18]: 

 1 2, ,...,i i i idX x x x  (1)  

 1 2, ,...,i i i idV v v v  (2)  

The best previous position of a particle is recorded and 
displayed based on the evaluation function value as 
follows: 

 1 i2, ,...,i idpbest p p p  (3)  
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If g as the particle has the best position in swarm in 
comparison with other particles then the situation is 
shown as below: 

 1 2, ,...,g g g gdgbest gbest p p p   (4)  

1k kgbest gbest    (5) 

Each particle tries to improve this position from personal 
best position (pbest) by using velocity and distance to 
global best position (gbest). Velocity and position of each 
particle in the current position will be applied for the 
particle position to fit in the next step, which is calculated 
by using the following formulas [17]: 

1
1 1

2 2

[ rand ( )

rand ( )]

k k
id idid id

gd id

v C w v c pbest x

c gbest x

      

  
 (6) 

1 1k k
idid id

x x v    (7) 

1 2
2

,
2 4

Z
c c c

  
  

  
 (8) 

where c is constriction factor, w is inertia weight 
parameter, c1 is cognitive coefficient, c2 is social 
coefficient and 1 2rand , rand are the random number 

between 1, 0. 
The PSO parameters influence in optimization large 

amount of inertia weight parameter (w) has contributed to 
global search, while a small amount of it is the local 
identity. So, at the beginning of the search, we select 
large amount of inertia weight parameter and gradually 
decreases in the next iterations. So, inertia weight 
parameter is obtained by using the following equation: 

max
max min min

max

( )
( )

iter iter
w w w w

iter


    (9) 

where iter is the number of current iterations and itermax 
is the maximum number of iterations. Normally, 
parameter w can be changed between 0.4 and 0.9. 
Although the PSO method leads to acceptable answer by 
using w time variant, it is weak for global optimization. 

Survey results indicate that the PSO method is 
optimal by setting parameters based on the nature and 
type of issue, a key factor in achieving accurate and 
efficient solution. On the one hand, if we choose large 
values for cognitive coefficient (c1) in comparison with 
social coefficient (c2), the particle trajectory is a large 
search space. In the other words, a relatively large 
amount of social coefficient leads the position of the 
particle in the premature local optimization. 

The optimization methods based on PSO are: 
• In the early stages of the search, the particles are 
emitted by the entire search space, without being trapped 
in local optimum points, and 
• Next steps in the search, the particles are pushed 
towards the global optimum point, 
accordingly, the optimal point to be achieved efficiently.  
In order to optimize, we use c1 and c2 time-varying 
acceleration. 

The main idea is in the early stages of upgrades 
nationwide search, and then in the final stages of the 
search particles move in the direction of convergence 
towards the global optimal point. In this strategy, with the 
progress of the search process, cognitive coefficient (c1) 
gradually declined, while the social coefficient (c2) 
increases. With the large amount of momentum 
coefficient c1 and a small amount of acceleration 
coefficient c2 are allowed in search of the particles, rather 
than going to the local optimal point in their journey 
across the search space. On the other hand, the 
acceleration coefficient c1 is small and c2 is large that 
allows to the particles move to the global optimum point. 
c1 and c2 on the acceleration coefficient can be expressed: 

1 1 1 1
max

( )f i i
iter

c c c c
iter

    (10)  

2 2 2 2
max

( )f i i
iter

c c c c
iter

    (11) 

where 1ic  is initial cognitive coefficient:, 1 fc  is final 

cognitive coefficient, 2ic  is initial social coefficient and  

2 fc  is final social. 

The original particle swarm optimization algorithm 
has undergone a number of changes since it was first 
proposed. Most of these changes affect the way the 
velocity of a particle is updated. In the following 
subsection, Discrete PSO briefly describes some of the 
most important developments [21]. 

Most particle swarm optimization algorithms are 
designed to search in continuous domains. However, 
there are a number of variants that operate in discrete 
spaces. The first variant proposed for discrete domains 
was the binary particle swarm optimization algorithm 
(Kennedy and Eberhart 1997). In this algorithm, a 
particle's position is discrete but its velocity is 
continuous. Velocities are updated as in the standard PSO 
algorithm, but positions are updated using the following 
rule [21]: 

 1
1 1 if 

0 otherwise

k
idk

id

R Sig v
x




  


 (12) 

1
( )

1 x
Sig x

e



 (13) 

 

 
 

Figure 1. Food searching of a swarm of birds mimetic the PSO 
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The basic idea of PSO based on food searching of a 
swarm of animals, such as fish flocking or birds swarm as 
depicted in Figure 1. Figure 2 shows the absolute 
convergence of particles to reach the spot [2, 11]. 
 

 
 

 
 

Figure 2. Convergence of particles 

 

 
 

Figure 3. Example of the new particle position after many iterations 

 
III. ED WITH PSO 

     As mentioned earlier, the PSO algorithm for solving 
the complex problems of ED, fuel costs, capacity 
limitations and other constraints will be considered. The 
PSO is a property of absolute convergence. 
 
A. The ED Model [18, 24, 25]  
1) Specification of the objective function 

min  ( )
gN

i i
i

cost F P��  (14) 

where Ng is the number of units (generators), and Fi (Pi) 
is cost function for ith unit. 

2( )i i i i i i iF P a P b P c� � �  (15) 

where , ,i i ia b c  are the coefficients of the cost of ith 
generator. 
2) Limitations (Constraints): 
a) Limitations for the operation of the unit: 

min max , 1,2,....,i i i gP P P i N� � �  (16) 

The min
iP  and max

iP  are minimum and maximum 
generation, respectively. 
b) Balance of power: 
Ng

i L D
i I

P P P
�

� ��                                                       (17) 

where PL is the loss function and PD is the load power 
losses can be obtained from matrix format (B matrix). 
The PL can be obtained with loss matrix. 

0 00
T T

LP P BP P B B� � �  (18) 
where B0 and B00 are the coefficients of the loss matrix. 
3) Constraint of power transition: 

max , 1, 2,....,i i LLf Lf i N� �  (19) 

where max
iLf  is the maximum allowable power from 

transmission line based on MW and NL is the 
transmission line. 
4) Limitations on network stability: 

max| | , , 1, 2,...  , i j ij Di j N i j� � �� � � �  (20) 

where ij�  is the first voltage angle (load angle) at the bus 

of (i, j) and max
ij�  is  the maximum voltage angle. The    

(i-j) are indicators of the line i-j and ND is the number of 
bus that has limitation for network stability. 
 
B. The Known Functions of PSO 

The known functions PSO adopted here are four 
benchmark functions used by many researchers. They are 
the sphere, Griewank, Rastrigrin and Rosebrock functions 
[20]. The definition of the sphere function is 

2

1

( )
n

i i
i

f x x
�

� �  (21) 

where n is the dimension of the sphere. The                    
n-dimensional Griewank function is defined as 

2

1 1

1
( ) cos 1

4000

nn
i

i i
i i

x
f x x

i� �

� � �� �  (22) 

The definition of the Rastrigrin function is 

2

1

( ) ( 10cos(2 ) 10)
n

i i i
i

f x x x�
�

� � ��  (23) 

The definition of the Rosenbrock function is 

2 2 2
1

1

( ) (100( ) ( 1) )
n

i i i i
i

f x x x x�
�

� � � ��  (24) 

 
C. Multimodal Functions of PSO [14] 

Multiple peak functions are often used to validate new 
algorithms. We can construct the following function with 
multiple peaks, 
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2
2 2

( )

2 2

sin( )
( , )    ,   >0x yx y

F x y e
x y

� �� ��
�

�
 (25) 

where (x, y) is [0, 5]×[0, 5]. Obviously, for a 
minimization problem, we can write it as 

2
2 2

( )

2 2

sin( )
( , )    ,   >0x yx y

F x y e
x y

� �� ��
� �

�
 (26) 

 
 

Figure 4. Example of multimodal optimization problem [14] 
 

 
 

Figure 5. Example of unimodal optimization problem [14] 

 
D. Implementation 

The accelerated particle swarm optimization has been 
implemented by using Matlab. If we run the program, we 
will get the global optimum after about 200 evaluations 
of the objective function (for 20 particles and 10 
iterations). The results are shown in Figure 2. 
 
E. Limitations 

For constrained optimization, there are many ways to 
implement the constraint equalities and inequalities. 
However, we will only discuss two approaches: direct 
Implementation and transform to unconstrained 
optimization. The new solutions are evaluated by using 
the standard PSO procedure. In this way, all of the new 
locations should be in the feasible region, and all 
infeasible solutions are not selected. There are other 
variations of particle swarm optimization, and PSO 
algorithms are often combined with other existing 
algorithms to produce new hybrid algorithms. In fact, it is 
still an active area of research with many new studies are 
being published each year. 

F. The ED Explanation with OPF Method 
The classical method such as traditional method, 

Newton-Raphson method and Decoupled method will be 
analyzed. These methods can be used online but the weak 
point is minimum local and is not global minimum. In all 
of mentioned methods, the aim of reducing losses is classic 
method focusing on value of angle load and voltage. 
1) Real power system losses 

1 1 1

gNN N

L i gi li
i i i

P P P P
� � �

� � �� � �  (27) 

2) Real power of ith bus 

1

| || | [ cos( ) sin( )]
N

i i k ik i k ik i k
k

P V V G B� � � �
�

� � � ��  (28) 

3) Reactive power of ith bus 

1

| || | [ sin( ) cos( )]
N

i i k ik i k ik i k
k

Q V V G B� � � �
�

� � � ��  (29) 

4) The fuel cost function 

,
1

2

1

( )  ,  unit of cost / hr

gN

c total ci
i

NG

i gi i gi i
i

F F

P P� � �

�

�

� �

� � �

�

�
 (30) 

5) The Lagrange function [3] 

1 1

1

( , , ) ( ) [ ( , ) ]

[ ( , ) ]

g

g

N N

g gi i i gi li
i i

N

i i gi li
i N

L P V F P P P V P P

Q Q V Q Q

� � �

� �

� �

� �

� � � � �

� � �

� �

�
(31)  

 
IV. CASE STUDIES 

 
A. Case Study 1: 6-generator for 26-Bus [4] 

Computation in this paper is based on a three-bus 
system with two generators and a system including of 26- 
bus and six generators, the circuit is shown in Figure 6 
[4]. The Matlab software is applied for this paper. The 
cost functions are as follows: 

2
1 1 1

2
2 2 2

2
3 3 3

2
4 4 4

2
5 5 5

2
26 26 26

0.007 7 240

0.0095 10 200

0.009 8.5 200

0.009 11 200

0.008 10.5 220

0.0075 18 190

C g g

C g g

C g g

C g g

C g g

C g g

F P P

F P P

F P P

F P P

F P P

F P P

� � �

� � �

� � �

� � �

� � �

� � �

 

 
Table 1. The results of the PSO method for IEEE network 26-bus 

 

METHOD PSO 
PD (MW) 1263 
PL (MW) 15.53 
Pg1 (MW) 472.552 
Pg2 (MW) 179.903 
Pg3 (MW) 201.453 
Pg4 (MW) 149.998 
Pg5 (MW) 196.496 
Pg26 (MW) 104.518 

Total power (MW) 1304.92 
Total cost (unit of cost /hr) 16492.92039 
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22

24

21

20

17

6

 
Figure 6. IEEE system 26-bus 

 
B. Case Study 2: 2-generator for 3-Bus [1] 
 

1 2

3  
Figure 8. IEEE System 3-bus 

 
Table 2. Line data of the system 

 

B/2 (p.u) Line impedance (p.u) To bus From bus Line no 
j0.01 
j0.01 
j0.01 

(0.05+j0.3) 
(0.05+j0.3) 
(0.05+j0.3) 

2 
3 
3 

1 
1 
2 

1 
2 
3 

 
Table 3. Data bus of the system 

 

Bus no Bus type V (p.u) Pg (p.u) Qg (p.u) Pd (p.u) Qd (p.u)
1 
2 
3 

Slack 
PV 
PQ 

1.02 
1.01 

? 

? 
? 
0 

? 
? 
0 

0.2 
0.1 

0.25 

0 
0.15 
0.1 

 
The cost function for 3-bus network is as follows: 

2
1 1 1

2
2 2 2

20 175 50

30 180 40

C g g

C g g

F P p

F P P

  

  
 

 
 

 
 
Figure 7. The final curve obtained from the convergence of particles in 

the system, the IEEE 26-bus 

 
C. Optimal Power Flow Using Classical Methods [1, 6] 

2 1 3

2 2 2 2

1
g gl

g

P PP P

P  

      
               

 (32) 

 sin cos( )i
i K ik i k ik i k

k

P
V V G B   




     
 (33) 

 
1

sin cos

for 2,3, ,

for 2,3, ,

( )

K I

N
i

i K ik i k ik i k
i i

P

i N

N

V V

k

G B   






     

 


 



 

 (34) 

 
 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 14, Vol. 5, No. 1, Mar. 2013 

14 

D. Newton-Raphson Method [1, 2] 
 

i) Real power balance in the network 

 , 0 , 1, 2,3,....,i gi liP V P P i N      (35) 

where iP  is real power injection at ith bus and is a 

function of ,V  . ,gi liP P  are also the real power 

generation and loading. 
( 1),( 2),...,    ,   0g g gii N N N P     

 

ii) Reactive power balance in the network 

 , 0 , ( 1), ( 2),....,i gi li g GQ V Q Q i N N N        (36) 

where iQ  is reactive power injection at ith load bus and is 

also a function of ,V  . The ,gi liQ Q  are also the 

reactive power generation and loading. 
 

iii) Limits on real power generation and reactive power 
generation 

min max
, 1,2,....,gi gi gi gP P P i N    (37) 

min max
, 1,2,....,gi gi gi gQ Q Q i N    (38) 

 

Limits on the voltage angels 

min max
, 1,2,....,i i i i N      (39) 

 

Limits on the voltage magnitudes of load buses 

min max
, ( 1), ( 2),....,i i i g gV V V i N N N      (40) 

H.[Changein control variables] = J       
where H is the Hessian matrix and J is the Jacobian 
matrix.  
 

The control variables are 
 [∆Pg1, ∆Pg2, ∆δ2, ∆δ3, ∆λP1, ∆λP2, ∆λP3, ∆λQ1, ∆V3] 
 
 

The tolerance in this iteration is given by 

     

   

2 2 20 0 0

1 2 1

1
2 20 0 2

1 1

[

]

g

g g

N N N

gi i i
i i i

N N

i i
i N i N

Tol P P

Q V

 

 

  

   

      

    

  

 
 (41) 

where ( 0.01)   is the tolerance allowed for 

convergence. So whit these updated values of control 
variables obtained above, we have to go for next iteration, 
starting from calculation of elements of  Jacobian matrix 
to obtain next set of control variables and this iterative 
process will continue till the tolerance becomes less than 

( 0.01)  . 

 
E. Fast Decoupled Method [5] 

It is a well-known fact that in any practical power 
system, during operation in steady state condition there 
are strong interdependencies between real power (P) and 
bus voltage angle (δ) and reactive power (Q) and bus 
voltage magnitude (ǀVǀ),whereas couplings between P-ǀVǀ 
and Q-δ are relatively weak. Therefore, the change in real 
power, specified at a bus is more dependent on the 
changes in bus voltage angle as well as the change in 
reactive power, specified at a bus is more dependent on 
the changes in bus voltage magnitude. The terms /P V   
and /Q    thus being small, they can be neglected in 

load flow computations. 
/ 0P V     ,  / 0Q     (42) 

The simulation results for 3-bus systems by using the 
PSO algorithm and OPF method based on generator 
power and operating costs are shown in Table 4. 

Table 4. Comparison results of the PSO and OPF for 3-bus 
 

Total cost  
(unit of cost/hr) 

Cost FC2 Cost FC1 
Total power 

(MW) 
Pg2 

(MW) 
Pg1 

(MW) 
Methods 

195.5261 73.372 122.1541 57.4544 18.001 39.4534 
PSO 

(PD = 55 MW) 

190.9345 70.3562 120.5783 55.04 16.415 38.625 
OPF 

(Classic) 

191.213 72.7945 118.4189 56.1818 17.6972 38.491 
OPF  

(Newton-Raphson) 

191.2128 72.8107 118.4021 55.186 17.705 37.481 
OPF 

(Fast decoupled) 

 
V. CONCLUSIONS 

This paper purposes an application of population 
based PSO algorithm and OPF to solve the various ED 
problems. The particle swarm optimization is a new 
heuristic optimization method based on swarm 
intelligence. Comparison with the other algorithms, the 
method is very simple, easily completed and it needs 
fewer parameters, which made it fully developed. 
However, the research on the PSO is still at the 
beginning, a lot of problems are to be resolved. Particle 
swarm optimization has paid a lot of attention for 
solution of such problems, as it will not suffer from stuck 
into local optimal solution, dependability on initial 
variables, premature and slow convergence and curse of 
dimensionality in comparison to conventional 

optimization techniques, PSO has given an improved 
result within less computational time. 

In the first part, ED is described by PSO method. This 
method is appropriate for solving nonlinear problems in 
complex networks of power system. The PSO is a 
property of absolute convergence (global minimum).The 
convergence speed of this method is preferred for solving 
non-convex nonlinear problems and particles of 
convergence as well. OPF method has been used in 
classical methods, which can lead to local minimum and 
but not global minimum. 

By Comparison, we can say that each of these 
methods have strengths and weaknesses. Generally, In 
OPF method poor convergence may get stuck at local 
optimum, they can find only a single optimized solution 
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in a single simulation run, they become too slow if 
number of variables are large and they are 
computationally expensive for solution of a large system.  

The classical methods applied for online network and 
make good result (local minimum).But these results 
certainly do not prove that they are optimal solutions 
(global minimum).Although The results of the new 
methods such as pso are close to optimal (global 
minimum), They are used in offline network. However, 
PSO can be used to solve complex optimization 
problems, which are non-linear, and multi-model and 
improve the voltage profile, and to enhance voltage 
stability. The main merits of PSO are its fast convergence 
speed and it can be realized simply for less parameters 
need adjusting. However, Future research will cover this 
approach in more detail and try to find some theories as 
to why this might lead to a better solution.    
 

NOMENCLATURES 
Xi: Position vector 
Vi: Velocity vector 
pbest: The best previous position of a particle 
gbest: The best position in swarm 
C: Constriction factor 
W: Inertia weight parameter 
C1: Cognitive coefficient 
C2: Social coefficient 
C1i: Initial cognitive coefficient 
C2i: Initial social Coefficient 
C1f: Final cognitive coefficient 
C2f: Final social Coefficient 
rand1, rand2: Random number between 1, 0 
Ng: is the number of units (generators), 
Fi(Pi): Cost function 
PL: Real losses power of system 
PD: Demand Load 
B0, B00: Loss matrix coefficients 
δi,j: Voltage angle (load angle) at i, j bus  
Pi, Qi: Real and reactive powers of bus ith 
L: The Lagrange function 

 
REFERENCES 

[1] A. Chakrabarti, “Power System Analysis Operation 
and Control ”, Sunita Halder, 2006. 
[2] X. Yang, “Introduction to Mathematic Optimization”, 
Cambridge International Science Publishing, Limited, 
2008. 
[3] A. Jan, “Practical Mathematical Optimization”, 
Florida, USA, 2005. 
[4] H. Saadat, “Power System Analysis”, McGraw-Hill, 
USA, 1999. 
[5] J. Zhu, “Optimization of Power System Operation”, 
USA, 2009. 
[6] A.S. Merlin, “Latest Developments and Future 
Prospects of Power System Operation and Control”, 
International Journal of Electrical Power and Energy 
System, Vol. 16, No. 3, pp. 137-139, 1990. 
[7] K.H. Abdul Rahman, S.M. Shahidehpour, N.I. Deeb, 
“Effect of EMF on Minimum Cost Power Transmission”, 

IEEE Transaction on Power Systems, Vol. 10, No. 1, pp. 
347-353, 1995. 
[8] V. Miranda, J.T. Saraiva, “Fuzzy Modeling of Power 
System Optimal Load Flow”, IEEE Transaction on Power 
Systems, Vol. 7, No. 2, pp. 843-849, 1992. 
[9] R. Bilinton, R. Ringlee, A. Wood, “Power System 
Reliability Calculations”, IT Press, Cambridge, 
Massachusetts, 1973. 
[10] H.W. Dommel, W.F. Tinney, “Optimal Power Flow 
Solutions”, IEEE Transactions, Issue 10, Vol. PAS-87, 
pp. 1866-1876, October 1968. 
[11] A.J. Keane, “Genetic Algorithm Optimization of 
Multi-Peak Problems: Studies in Convergence and 
Robustness”, Artificial Intelligent - Intelligence in 
Engineering, Vol. 9, pp. 75-83, 1995. 
[12] K. Deb, “Optimization for Engineering Design: 
Algorithms and Examples”, Prentice-Hall, New Delhi, 
1995. 
[13] A.P. Engelbrecht, “Fundamentals of Computational 
Swarm Intelligence”, Wiley, 2005. 
[14] M. Rashid, “Combining PSO Algorithm and Honey 
Bee Food Foraging Behavior for Solving Multimodal and 
Dynamic Optimization Problems”, Doctoral Thesis, 
Pakistan, February 2010. 
[15] D.E. Goldberg, “Genetic Algorithms in Search 
Optimization and Machine Learning”, Reading, Mass: 
Addison Wesley, 1989. 
[16] J. Kennedy, R.C. Eberhart, “Particle Swarm 
Optimization”, IEEE International Conference on Neural 
Networks, Piscataway, NJ, 21 November 2008. 
[17] Q. Bai, “Analysis of Particle Swarm Optimization 
Algorithm”, College of Computer Science and 
Technology (CCSE), China, Vol. 3, No. 1, pp. 180-184, 
February 2010. 
[18] J.B. Park, K.S. Lee, J.R. Shin, K.Y. Lee, “A Particle 
Swarm Optimization for Economic Dispatch with 
Nonsmooth Cost Functions”, IEEE Transactions on 
Power Systems, Vol. 20, No. 1, 2005. 
[19] A. Mahor, V. Prasad, S. Rangnekar, “Economic 
Dispatch Using Particle Swarm Optimization: A 
Review”, Azad National Institute of Technology, Bhopal, 
Madhya Pradesh, India, Vol. 13, pp. 2134-2141, 2009. 
[20] Ch. Yang, D. Simon, “A New Particle Swarm 
Optimization Technique”, Cleveland State University, 
Ohio, USA, 2005. 
[21] M. Dorigo, M.A. Montes de Oca, A. Engelbrecht, 
“Particle Swarm Optimization”, Scholorpedia, Vol. 3, 
No. 11, p. 1486, 2008. 
[22] Swarm Intelligence, www.swarmintelligence.org . 
[23] E.W. Weisstein, http://mathworld.wolfram.com . 
[24] H. Shayeghi, A. Ghasemi, “Application of MOPSO 
for Economic Load Dispatch Solution with Transmission 
Losses”, International Journal on Technical and Physical 
Problems of Engineering (IJTPE), Issue 10, Vol. 4, No. 1, 
pp. 27-34, March 2012. 
[25] H.A. Shayanfar, A. Ghasemi, N. Amjady, O. 
Abedinia, “PSO-IIW for Combined Heat and Power 
Economic Dispatch”,  International Journal on Technical 
and Physical Problems of Engineering (IJTPE), Issue 11, 
Vol. 4, No. 2, pp. 51-55, June 2012. 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 14, Vol. 5, No. 1, Mar. 2013 

16 

BIOGRAPHIES 
 

Reza Effatnejad was born in 
Abadan, Iran on December 14, 1969. 
He is a Ph.D. in Electrical 
Engineering and an Assistant 
Professor in Karaj Branch, Islamic 
Azad University, Karaj, Iran. He has 
published more than 42 published 
papers in journals and international 

conferences. Power and energy and also energy labeling 
in home appliances are the main field of his studies and 
scientific activities. 

 
Sajad Bagheri was born in Arak, 
Iran, in 1989. He received his B.Sc. 
degree in Electrical Engineering from 
Arak Branch, Islamic Azad 
University, Arak, Iran in 2011. 
Currently he is a M.Sc. student in 
Power Engineering at Science and 
Research Branch, Islamic Azad 

University, Karaj, Iran. His research interests are 
included power system, restructured power system and 
condition monitoring techniques for power transformers. 

 

Mehdi Farsijani was born in Gilan, 
Iran, in 1987. He received his B.Sc. 
degree in Electrical Engineering from 
Yazd Branch, Islamic Azad 
University, Yazd, Iran in 2010. He is 
a M.Sc. student in Power Engineering 
at Science and Research Branch, 
Islamic Azad University, Karaj, Iran. 

His research interests are included power system, 
restructured power system, FACTS devices, power 
system dynamics and control. 

 
Reza Talebi was born in Qazvin, 
Iran, in 1983. He received his B.Sc. 
degree in Electrical Engineering from 
South Tehran Branch, Islamic Azad 
University, Tehran, Iran in 2009. He 
is a M.Sc. student in Power 
Engineering at Science and Research 
Branch, Islamic Azad University, 

Karaj, Iran.  His research interests are included power 
system and restructured power system. 

 

 
 
 
 
 
 
 
 

 


