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Abstract- FACTS devices allocation and assessing its 
optimal capacity is one of most discussed subject in 
scheduling and utilization of the power system. 
According to value of the matter such as power loss 
reduction, enhance of the stability margin and also, less 
cost imposition need to create a partial balance between 
these several goals, FACTS allocation problem 
established as a multiobjective optimization problem. It 
postulates that the achievement of those registered goals 
simultaneously, implicates the use of the multiobjective 
optimization methods and finally, reaches the Pareto 
optimal sets. A hybrid approach based on non-dominated 
sorting particle swarm optimization (NSPSO) algorithm 
and Fuzzy logic is presented in this paper that is able to 
present the Pareto optimal sets in the meantime to attend 
the technical and economic aspects. In this paper, the 
efficiency of this approach’s performance in test IEEE 
14-bus and 30-bus systems is analyzed. 
 
Keywords: FACTS Devices Allocation, NSPSO 
Algorithm, Fuzzy Logic, Multiobjective Optimization. 
 

I. INTRODUCTION                                                                         
Nowadays the nations is becoming ever more 

dependent on its electrical power grid and due to the load 
demand is increasing, so because of the difficulty of the 
new line construction, and its environmental and 
economic considerations,  the utilities are now forced to 
increase the utilization of existing transmission facilities  
while at the same time, whilst  the power grid is 
becoming increasingly vulnerable to both natural and 
intentional disturbance, some problems such as power 
loss enhancement, voltage profile decay and stability 
margin decrement appear more.  

Resolving these problems and improvement of the 
system’s performance is therefore of paramount 
importance. The need for more efficient electricity 
system has given rise to innovative technologies in power 
generation and transmission. Flexible AC transmission 
systems is a good example of a new development in 

transmission systems, FACTS as they are generally 
known, are new devices that improve transmission 
systems. These devices cause the Transmission systems 
could be flexible to react to more diverse generation and 
load patterns. Flexible AC Transmission Systems 
(FACTS) is a technology that significantly alters the way 
transmission systems are developed and controlled 
together with improvements in asset utilization, system 
flexibility and system performance.  

However, to obtain good performance from these 
controllers, proper placement of these devices in the grid 
is important [1-14]. In the past, various optimization 
techniques have been used for the placement of FACTS 
devices. In [1] a sensitivity based method is proposed for 
finding the optimal placement of FACTS devices in the 
system. S.H. Song et al. [2] have applied an analytical 
method which is implemented to minimize the security 
indices. Ref. [3] introduces a PSO based approach to find 
the optimal location of FACTS devices with minimum 
cost of installation to improve system loadability. The 
optimal location of FACTS devices in power system 
using genetic algorithm is suggested in [4]. This method 
optimizes the type and rated value of the FACTS devices 
simultaneously.  

In [5], a genetic algorithm is presented to seek the 
optimal location of multi-type FACTS devices. In this 
method the system loadability is applied as measure of 
power system performance. In [6], the authors proposed 
an approach for optimal placement of STATCOM which 
is based on simultaneous application of PSO and CPF to 
optimize the objective functions. In [7], FACTS devices 
are optimally allocated to achieve optimal power flow 
solution. In this approach, the performance of the power 
network is improved by a Bacterial Swarming Algorithm 
(BSA). In order to enhance voltage profile and reduce 
total real power losses, PSO and GA are used for SVC 
planning in [8]. In [9], a Micro-Genetic based method 
which is conjunction with Fuzzy logic, is used to 
optimize the type and rated value of the FACTS devices. 
In [10], a harmony search heuristic method and GA have 
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been suggested to optimally locate the UPFC, TCPAR 
and SVC. From a comprehensive solution development 
point of view, in the procedure of transforming the multi-
objective function problem to mono objective function, it 
is very difficult to choose appropriate weighting 
parameters. Considering a range of possible solutions to 
this problem and that a single best numerical solution 
may not be applicable in real-life systems due to various 
not-technical and non-quantifiable constraints, it would 
be better to identify groups of feasible solutions using 
multi-objective optimization algorithms, i.e. In [11], a 
multiobjective genetic algorithm is used to characterize 
the Non-dominated solutions. In this method, the 
optimization process is focused on three parameters: 
location, type and size of Facts devices.  

In [12], the authors have proposed a multiobjective 
Particle Swarm optimization (MOPSO) to find optimal 
location of SVC. R. Benabid et al. [13] applied Non-
dominated Sorting Particle Swarm Optimization for find 
the optimal location and rating of SVC and TCSC. But 
the procedure of the allocation is done in one load level. 
In [14], M. Gitizadeh has presented a multi-objective 
genetic algorithm (MOGA) to solve FACTS devices 
problem. A review of these methods reveals that most of 
these studies have taken into account the methods 
oriented towards technical criteria or to economical 
approach. And both technical and economic criteria are 
not considered in the selection procedure of the best 
compromise solution.  

In this paper, a hybrid approach which is composed of 
NSPSO algorithm and Fuzzy logic is proposed to solve 
multiobjective FACTS devices allocation problem. Here, 
active power loss and L index voltage stability are 
optimized simultaneously in FACTS device equipped 
power systems while maintaining power balance 
constraints, active and reactive power generation limits, 
voltage limits, transmission line limits, and physical 
limits of FACTS devices. Thyristor controlled series 
capacitor (TCSC) and Static VAR compensator (SVC) 
are integrated in Power Flow equations using through the 
reactance model and injected power model respectively.  

The optimization procedure is performed for two 
objective functions. The problem is formulated as a bi-
objective optimization problem, considering only the 
minimization of active power loss and L voltage stability 
index. In order to demonstrate the effectiveness of the 
proposed approach, the modified IEEE 14-bus and 30-bus 
systems are taken as test systems Results obtained from 
the proposed approach have been compared to those 
obtained by PSO algorithm.  In both algorithms the 
parameters are the same.  

In section II, the bi-objective function and problem 
statement is discussed. Then the proposed hybrid 
approach will be introduced, also objective functions are 
described in section III. Steady state model of FACTS 
devices and decision algorithm are given in section IV 
and V, respectively. Finally the implementation of the 
hybrid algorithm is done at the IEEE 14-bus and 30-bus 
test systems and the results are analyzed in section VI. 
The paper closes with the conclusions in section VII. 

II. MULTIOBJECTIVE OPTIMIZATION 
OVERVIEW 

Many real world problems involve simultaneous opti
mization of several objective functions. Generally, these 
functions are non-commensurable and often conflicting 
objectives. Multi-objective optimization with such 
conflicting objective functions gives rise to a set of 
optimal solutions, instead of one optimal solution. The 
reason for the optimality of many solutions is that no one 
can be considered to be better than any other with respect 
to all objective functions. These optimal solutions are 
known as Pareto-optimal solutions. A general multi-
objective optimization problem consists of a number of 
objectives to be optimized simultaneously and is 
associated with a number of equality and inequality 
constraints. It can be formulated as follows: 

1 2minimize ( ( )) min[ ( ), ( ),..., ( )]

( ) 0       1 ,  2 ,   ,  

( ) 0      1 ,  2 ,   ,   

T
M

L

j

F x F x F x F x

h x L e

g x j N



  
   

 
(1) 

where x represents the feasible search space. The 
objective functions are conflicting one another and the 
aim is optimizing them simultaneously (without loss of 
generality it is assumed that the objectives are to be 
minimized). The decision vector x belongs to the feasible 
region. It is the decision vector representing a solution. In 
order to compare candidate solution in multiobjective 
optimization problems, the concept of Pareto dominance 
is used [7, 11, 12, 13]. 
Definition 1: A solution x1 is said to dominate x2 
(denoted by x1<x2) if and only if: 

1 2 1 2( ) ( )  {1, 2,...,  } : ( ) ( )i i i iF x F x i M F x F x       

This means that the decision vector x1 is not worse than x2 
in all objectives and is strictly better than x2 in at least 
one objective. 
Definition 2: For S = {xi, i=1, ..., n} , solution x is said to 
be a non-dominated solution (Pareto solution) of set S if 
x S  and there is no solution x S  for which x′ 
dominates x. 
Definition 3: Assume that set P contains all the non-
dominated solutions of S, then PF = {v|v =[ f1(x), f2(x)… 
fm(x)]T, x P } is a Pareto front of set S.  
The goals of multi-objective optimization are: (1) to 
guide the search toward the true Pareto front (non-
dominated solutions) or approximate the Pareto optimal 
set and (2) to generate a well-distributed Pareto front.   
 
A. Problem Statement 

Many areas in power systems, including the FACTS 
devices placement, sizing and control, require solving one 
or more nonlinear, multi-objective optimization 
problems. While analytical methods might suffer from 
slow convergence and the curse of dimensionality, 
heuristics based evolutionary computation techniques can 
be an efficient alternative to solve these complex 
optimization problems. In this paper, the optimization 
problem includes basically two aspects: finding the 
optimal location of the device in the network, finding its 
optimal size, such that maximum benefit can be obtained 
in steady state.  
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Considering these two aspects, the problem becomes 
a multiobjective optimization problem which involves a 
very complex formulation and it is certainly difficult to 
solve in an efficient manner. Non-dominated Particle 
Swarm optimization (NSPSO) is one of evolutionary 
algorithms (EAs) that are used to explore the different 
parts of the Pareto front simultaneously. NSPSO 
algorithm is developed by Xiaodong Li in 2003, which is 
an extended form of PSO. Similar to PSO algorithm, 
NSPSO is known to effectively solve large scale 
nonlinear optimization problems. It is not largely affected 
by nonlinearity of the problem, and can converge to the 
optimal solution in many problems where most analytical 
methods fail to converge. It can therefore be effectively 
applied to optimal location, sizing and control of FACTS 
devices in the power systems.  

Moreover, NSPSO has some advantages over other 
similar    multi-objective optimization techniques since: 
(i) it is easier to implement and there are few parameters 
to adjust, (ii) it has an effective elitism capability and (iii) 
NSPSO maintains the diversity of the particles with 
crowding distance mechanism. Thus it is capable to avoid 
getting trapped in local minima [13, 18]. NSPSO 
algorithm is based on the same non-dominated sorting 
concept used in NSGA-II and presented in [17] in detail. 
In particular, this research proposed a hybrid algorithm 
which is composed of NSPSO algorithm and Fuzzy 
logic. The task of NSPSO is to find the Pareto optimal 
solutions and Fuzzy system’s one is to select the best 
compromise solution among optimal solutions. It is able 
to solve multiobjective problem related to FACTS devices 
allocation. In order to attain Pareto optimal solutions 
following fitness assignment scheme is considered. 
 In the fitness assignment procedure, NSPSO allocates 
a rank value ri to each solution. The non-dominated 
solutions are identified and assigned the rank value 1. 
After removing those solutions from the population, new 
non-dominated solutions are assigned rank value 2. This 
procedure continues iteratively. In this way, non-
dominated particles are always assigned the same rank. 
Assignment of fitness according to rank is as follows:  

For the each t generation, sort population in 
descendent order according to rank (p, t) of the particle p. 
The particles rank is given by: 

rank( , ) 1 t
pp t n 

 

(2)
 Dominance count is equal to the number of particles, in 

current population, which dominate the particle p. All 
non-dominated particles are assigned rank 1. Figure 1 
provides a graphic example. It represents rank values for 
a population (size 10). First, the non-dominated solutions 
1, 2 and 3 receive rank value 1, then solutions 4, 5 and 6 
receive rank value 2 and the procedure continues. To 
promote the solutions in the sparse region, crowding 
distance Di is assigned to each candidate solution. Di is 
the average distance of two points on either side of the 
solution i along each of the objectives. With assigned ri 
and Di, any two solutions in the population can be 
compared. Solution i is superior than solution: 

     or  and i j i j i jj r r r r D D     (3) 

 
 The initial population of particles is initialized with 
random solutions. For every generation, whole the 
solutions move toward the Pareto Optimal Front (POF) 
by updating its velocity, Pbest and Gbest. This 
remarkable performance of NSPSO can be attributed to 
its use of Non-dominated sorting approach to sort the 
solutions. Using this principle, whole the solutions sort in 
different fronts. For these types of problems the Proposed 
Algorithm can converge in parallel to the Pareto front. 
While optimizing, different solutions in the population 
converge to different areas of the Pareto front, and thus 
an approximation of the Pareto front can be obtained in a 
single optimization run (trade-off surface) [16-18].  
 In absence of additional information, it is not 
possible to distinguish any one of the Pareto solutions as 
being objectively better than any others with respect to all 
the objectives concerned (i.e. there is no uniquely “best” 
solution); therefore, each of them is an acceptable 
solution. Once the set of optimal solutions is 
identified, designer has owns freedom to choose one 
solution out of many possible solutions based on their 
experience and prior knowledge and other criteria or 
constraints. In this paper, the choice of the optimal 
solution among the POF points remained to Fuzzy 
Inference system (FIS). 
 
B. Brief Discussion about NSPSO 

Similar to PSO algorithm, in each iteration of 
NSPSO’s Implementation, each agent is updated with 
reference of two “best” values:  Pbest and Gbest. Each 
agent seeks to modify its position using the current 
positions, the current velocities, the distance between the 
current position and Pbest, and the distance between the 
current position and Gbest. In NSPSO those parameters 
need to be tuned are: the number of particles; weighting 
factors; and the maximum change for a particle. In order 
to attaining the Pareto optimal solutions, usually the 
number of particles is set high.  

The weighting factors, C1 and C2, are often to 2, 
though other settings are used in different papers, 
typically with C1 = C2 and in the range [1, 2]. Instead of 
comparing solely on a particle’s personal best with its 
potential offspring, the entire population of N particles’ 
personal bests and N of these particles’ offspring are first 
combined to form a temporary population of 2N particles. 
After this, the non-dominated sorting concept is applied, 
where the entire population is sorted into various non-
domination fronts. In order to ensure the best distribution 
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f2 
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6 
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10 

Rank 1 Rank 2 

Rank 3 

Rank 4 

Figure 1. Fitness assignment of NSPSO in a two-objective space 
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of the non-dominated solutions, a new parameter called 
crowding distance is introduced.  

It is a measure of how close an individual is to its 
neighbors. The global best Gbesti for the ith particle Xi is 
selected randomly from the top part of the first front. 
Based on rank value of the points, N particle are selected 
to play the role of Pbest. It should be noted that, Pbest is 
selected from the fronts which has smaller rank value and 
if the number of the solutions in one front is bigger than 
N, the selection criterion is based on the crowding 
distance (D). After the determination procedure of Pbest 
and Gbest, the position of the particles must be updated. 
It is done based on following equations [13, 18, 19, 20]. 

1 1

1
1

2

rand1 ( )

rand2 ( )

k k k
i i i

k k k
i i i i

k
i i

X X V

V WV C Pbest X

C Gbest X

 



 

    

  

 (4)
 

where, Vi 
k+1 is current velocity of agent i at iteration k+1, 

Xi
k is current position of agent i at iteration k and Xi

k+1 is 
current position of agent i at iteration k+1. Also, in this 
paper, the following weighting function is used: 

max min
max

max

( ). 
W W

W W iter
iter


 

 

(5)
 

where, Wmax, Wmin are initial/initial weight, itermax is max. 
iteration number and iter is current iteration number. 
 

III. PROBLEM FORMULATION 
The FACTS devices allocation problem using SVC 

and TCSC can be formulated as a mixed continues-
discrete multiobjective   optimization problem.     The 
optimization parameters are FACTS locations and the 
levels of compensations. In this paper, these objectives 
include active power loss minimization and L voltage 
stability index minimization. They depend strongly on the 
available control variables. Attaining to this goal, could 
be achieved by placing SVC and TCSC considering the 
following objective functions. 

 
A. Real Power Loss 

The first objective is related to real power loss. This 
term, called RPL, is computed by active power flow 
through the transmission lines of the system and can be 
expressed as: 

2 2
1

1

min{ [ 2 cos( ]}
lN

k i j i j i j
k

F g V V V V  


   
 

(6)
 

where, Nl is the number of transmission lines; gk is the 
conductance of the kth line; Vii, Vj j are the voltages 
at the end buses i and j of the kth line, respectively. 
 
B. Voltage Stability Index 

The second objective function concerns voltage 
stability of the system. The voltage stability index is 
based on the hybrid matrix of circuit theory. It is assumed 
all of the system’s nodes are divided in to generator 
nodes (indicated by index G) and load nodes (indicated 
by index L). Then transmission system is written as: 

    

  
LL LGL L

G GGL GG

Z FV I
H

I VK Y

    
     

      

(7)
 

For a given system operating condition, using the 
load-flow (state estimation) results, the voltage-stability L 
index at load node j is obtained as: 

1 /  j oj jL V V 

 

(8) 

where, 

G

oj ji i
i

V F V


    (9) 

and i indicate  the generator buses. Therefore, the voltage 
stability index for whole network may be expressed as:  

max( ) jL L  (10) 

where Index L varies between 0 and 1 where 0 means a 
power network without load and L=1 shows a voltage 
collapse. Hence the introduced index allows the operator 
to estimate a margin to voltage instability. The third 
objective which is minimized is the L voltage stability 
index. This index is calculated for all load buses and the 
maximum amount of all buses is the objective. It can be 
expressed as: 

2 min{max( )} jF L  (11)

 

 

A.  
C. Equality Constraints 

These constraints represent the typical load flow 
equations as follows: 

1

[ cos( ) sin( )] 0
bN

Gi Di i j ij i j ij i j
j

P P V V G B   


     
 
(12)

 

 

1

[ sin( ) cos( )] 0
bN

Gi Di i j ij i j ij i j
j

Q Q V V G B   


     
 

(13)

  
1, 2,....., bi N  

where, Nb is the number of buses; PG and QG are the 
generator real and reactive power, respectively; PD and 
QD are the load real and reactive power, respectively; Gij 
and Bij are the transfer conductance and susceptance 
between bus i and bus j, respectively. 
 
D. Inequality Constraints 

These constraints represent the system operating 
limits as follows: 
 Generation Constraints: The generator reactive power 
output QG is restricted by its lower and upper limits as : 

min max   ,   1, 2,...,Gi Gi Gi GQ Q Q i N    (14)

   Operating Constraints: The constraints of voltage at 
load buses and line loadings. 

 
min max

max

  ,   1, 2,...,

   ,   1, 2,...,

i i i b

Li Li l

V V V i N

S S i N

  

 
 (15)

  
 FACTS Devices Constraints: 

min max

min max
 

   ,   1,2,...,

   ,   1,2,...,

SVCi SVCi SVCi S

TCSCi TCSC i TCSCi TC

Q Q Q i N

X X X i N

  

  

 

 (16)

 

 

where, QSVCi is reactive power injection at bus i by SVC, 
NS is number of SVC in the system, XTCSC is reactance of 
TCSC and NTC is number of TCSC in the system. 
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IV. FACTS DEVICES MODELING 
As the intention is to improve the steady state 

operation, the power system as well as the FACTS 
devices is modeled using static equations. The steady 
state models of the selected FACTS devices and their 
models are briefly discussed below [4, 5, 9, 10, 13, 14]. 
 
A. TCSC Steady State Model 

Thyristor Controlled Series Capacitor (TCSC) is an 
important FACTS component that is able to alter the 
value of the transmission line reactance by adding either a 
capacitive or inductive component to the main 
transmission line reactance as shown in Figure 2. In this 
study, the reactance of the transmission line is adjusted 
by TCSC directly. The rating of TCSC depends on the 
reactance of the transmission line where the TCSC is 
located. 

.TCSC TCSC LineX r X  (17)

 

 

where XLine is the reactance of the transmission line and 
rTCSC is the coefficient which represents the degree of 
compensation by TCSC. To avoid overcompensation, the 
working range of the TCSC is chosen between ( 0.8X
line and 0.2X line). By optimizing the reactance values 
between these ranges, Optimal setting of reactance value 
can be achieved. 
 
B. SVC Steady State Model 

While the previous device is a series connected, an 
SVC is shunt connected devices. It is installed in parallel 
with a bus and has the ability to generate or absorb 
reactive power at the point of connection. In this paper, 
the SVC is modeled as a generator (or absorber) of 
reactive power like is presented in Figure 3 the reactive 
power provided is limited as presented in the equation 
below: 

min max
SVC SVC SVCQ Q Q   (18)

 

 

 
 

 
 

Figure 3. Steady State model of SVC 

 
V. DECISION ALGORITHM 

The problem of FACTS devices allocation which is 
described in the past section is a multiobjective 
optimization problem so it is necessary to use a 
multiobjective technique for solving it. Thus using a 

multiobjective technique gives a set of optimal solutions. 
Selection of the Best Compromise Solution is a crucial 
step in such algorithms.  

In this paper, the optimization problem is solved by 
NSPSO algorithm and the choice of the optimal solution 
among the optimal Pareto solutions is based on Fuzzy 
inference system (FIS). Due to the importance of this 
matter, a Fuzzy logic technique is proposed to achieve a 
tradeoff between the conflicting multiple objective 
functions.  

In resolution procedure of the problem, in the first 
step, NSPSO algorithm is implemented, and the pareto 
optimal solutions are attained. Then at the second step 
two indexes those called Preference Index (PI) and Cost 
Index (CI) are calculated. These indexes are inputs of the 
FIS. Similar to PI and CI, an index is introduced as the 
output of the FIS. This index is called Satisfaction Index 
(SI). The inputs should be fuzzified by the membership 
functions shown in Figures 4 and 5.  

The membership function of the output is shown in 
Figure 6 the inference engine uses the rules defined in 
Table 1 and develops fuzzy outputs from the fuzzy 
inputs. The fuzzy output is defuzzified to yield a crisp 
value for the Satisfaction Index. Table 1 shows the fuzzy 
rules for solving the problem where, G stands for good, 
M stands for moderate, B stands for bad, PG stands for 
partly good and PB stands for partly bad.  

 

 
 

Figure 4. Cost index membership function 

 

 
 

Figure 5. Preference index membership function 

 

 
Figure 6. Satisfaction Index membership function 
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Figure 2. Steady State model of TCSC 
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Table 1. Fuzzy rules 
 

 PI 
G M B 

 
CI 

G G PG B 
M PG PG B 
B PG PB B 

 
In the proposed hybrid algorithm, the solution with 

the highest Satisfaction Index (SI) is the best compromise 
solution in the Pareto optimal set. Sorting the optimal 
solutions based on Preference Index (PI) and Cost Index 
(CI), allows DM, to have a high capability of decision in 
the selection procedure of the solution. It should be noted 
that, in the selection of the best compromise solution, the 
decision’s criterion is based on SI value. Also it is 
necessary to mention that, the solution with lowest value 
of PI has technical justification and the solution with the 
lowest CI has economic justification. Best compromise 
solution which has the highest value of SI is capable to 
balance between two these aspects. Once the Pareto 
optimal set is obtained, it is practical to calculate the PI 
and CI. In order to reach this important Goal, the 
functions of these parameters are presented as bellows: 
 
A. Preference Index (PI) 

As the algorithm yields a set of the optimal solutions, 
always there is a challenge to balance between the objects 
which regarded in the multiobjective function. From the 
technical aspect, PI function is introduced to represent the 
ranking of the non-dominated solutions. The solution 
which attains the minimum value of PI has more 
technical justification. 

1

min

min
min max

max min

max

( ) ( )

0                               ( )

( )
( )          ( )

1                                ( )

M

i j i
j

j i j

j i j
j i j j i j

j j

j i j

PI X mo X

F X F

F X F
mo X F F X F

F F

F X F




 

   








 (19)

 

 

where Fj
min and Fj

max  are the minimum and the maximum  
value of the jth objective function among all non-
dominated solutions, respectively and M is the number of 
the objective functions. 
 
B. Cost Index (CI) 

Due to the high investment and operating costs of 
FACTS devices, it is important to consider the economic 
aspects related to these devices. Hence, in order to attain 
this goal, the CI function introduced and it is presented as 
bellows: 
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Using Siemens AG database, the investment cost 
functions of SVC and TCSC are developed as follows:  

2( ) 1000m m m mIC aS bS c S      (21) 

 
Table 2. Cost coefficient for SVC and TCSC 

 

Type C B A 
SVC 0.0003 0.3051 127.38 

TCSC 0.0015 0.7130 153.75 

 

 
C. Constraint Handling Scheme 

In order to handle constrained optimization problem, 
the proposed algorithm is adapted the constraint handling 
mechanism used by NSGA-II due to its simplicity in 
using feasibility and non-dominance of solutions when 
comparing solutions. A solution i is said to constrained-
dominate a solution j if any of the following conditions is  
true:  
1. Solution i is feasible and solution j is not.  
2. Both solutions i and j are infeasible, but solution i has a 
smaller overall constraint violation.  
3. Both solutions i and j are feasible and solution i 
Dominates solutions j. 

Comparing two feasible particles, the particle which 
dominates the other one is considered as a better solution. 
On the other hand, if both particles are infeasible, the 
particle with a lesser number of constraint violations is a 
better solution. In this paper, the overall constraints 
violations can be computed as: 
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where Sj
max is thermal limit of jth  transmission line and 

Vi is the voltage magnitude at bus i. The Vi
max and Vi

min  
denote the violated upper or lower limits, Vω  and Sω  are 

weighting coefficients which are set to 0.5 here. The 
flowchart of the proposed algorithm is shown in Figure 7. 
 

VI. RESULTS AND DISCUSSIONS 
In order to investigate its effectiveness of the 

proposed algorithm, it is implemented using IEEE 14-bus 
and 30-bus systems. Data of these systems is taken from 
[14] and [15], respectively. Since, the voltage limits of 
load buses and are not considered in IEEE data format; 
the maximum and minimum voltage load buses are 
considered 1.1 pu and 0.9 pu, respectively.  
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The thermal limits of lines are taken from [21]. In this 
work the generators are modeled as PV buses with Q 
limits; the loads are typically represented by constant PQ 
loads; the decision variables considered are the location 
and setting of TCSC and SVC. The number of FACTS 
and their constraints are chosen at the beginning; where 
the number of FACTS is fixed at one for each type, 
also the reactance of TCSC is considered as continuous 
variable which varies between 20% inductive and 80% 
capacitive of the line reactance.  

The placement of TCSC is considered as a discreet 
variable, where all the lines of the system are selected to 
be the optimal location of TCSC. Similarly, the SVC 
considered as a generator (or an absorber) of reactive 
power which varies continuously between -2 pu and 2 pu. 
The optimal location of SVC is, also, considered as a 
discreet decision variable, where all load buses are 
selected to be the optimal location of SVC.  
In this paper, the optimal location and setting of SVC and 
TCSC is performed considering three cases in term of use 
of FACTS: 
 Case 1: SVC only 
 Case 2: TCSC only  
 Case 3: Coordinated SVC and TCSC  

Also, the performance of the proposed algorithm is 
compared with PSO’s one. The parameters of both 
algorithms for all optimizations cases are summarized in 
Table 3. It should be noted that, in the hybrid approach, 
the selection mechanism of the final solution is based on 
both technical and economical consideration, but in PSO 
algorithm, this procedure is done based on technical 
aspect of problem. The necessary information for 
economic study is listed in Table 4. 
 

Table 3. NSPSO and PSO parameters 
 

Cj Wmax Wmin Number of generation Population size 
2.0 0.9 0.4 50 100 

 
Table 4. Information for economic study 

 

Parameters Values 
Factor and duration of load level 1 0.81, 2136 hours 
Factor and duration of load level 2 1.00, 2832 hours 
Factor and duration of load level 3 0.90, 4392 hours 

Interest rate 15 % 
Ke 0.16 $/KWh 

Life time of FACTS devices 30 years 
Base cost 100000 $ 

 
Table 5. Hybrid and pso solutions of case1 for bi-objective optimization 

 

 
Corresponding Solution to: Solution found by: 

Best L 
Index 

Best 
Losses 

PSO 
Hybrid 

approach 
Location 1 
(Bus No.) 

11 9 13 9 

Setting 2 
(p.u) 

-16.0475 -16.5854 -19.8916 -16.5854 

L index 0.0748 0.0782 0.0765 0.0782
Losses 3 
( p.u ) 

0.346712 0.342475 0.351711 0.342475 

1: Bus data in [14] 
2: Generated reactive power: positive means operation in capacitive mode 
3: Base Power = 100 MVA 

 
 

Figure 7. Flowchart of hybrid approach for FACTS devices allocation 
 

A. IEEE 14-BUS 
 
A.1. Case 1: SVC Only 

Figures 8 and 9 show the graphical results produced 
by hybrid approach in case 1. The Pareto optimal set has 
4 points and it can be seen that the obtained solutions are 
well distributed on trade-off surface; except some 
discontinuity, caused by discrete optimization. The 
solutions for giving the best objective functions are 
presented in Table 5. As it can be seen from this table, the 
solution of PSO and hybrid algorithms is exhibited. From 
Table 5, we can conclude that the placement of SVC at 
bus 11 with the reference set at -16.0475 MVAR presents 
the best L index of 0.0748. The installation of SVC at bus 
9 with -16.5854 MVAR of the reference presents the 
minimum real power loss of 0.342475 pu.  
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Based on the value of SI, the installation of SVC at 
bus 9 with -16.5854 MVAR of the reference, is 
considered as the best compromise solution throughout 
the Non-Dominated solutions set. In order to compare the 
performance of the hybrid approach and PSO algorithm it 
can be seen that the proposed algorithm is able to 
decrease real power loss more, but to decrease the L 
stability index of the system, 
PSO algorithm has better performance. Table 6 shows the 
numerical results corresponding to the best CI, PI and SI 
values. It can be seen that, the PI value of both solutions 
with minimum CI and PI value is equal to 1. Since the PI 
values of these solutions are the same, consequently, that 
solution with smaller CI is selected as the best 
compromise solution. This solution is considered as the 
solution which has the biggest SI value. Also in the term 
of CI comparison between hybrid approach and PSO 
algorithm, we can conclude the hybrid algorithm has 
better performance than PSO’s one. The presented results 
are verified in Table 7. 
 
Table 6. Corresponding objectivefunctions to those solutions with the 

best CI, PI and SI for case 1 
 

 
CI 1 

 (p.u) 
PI SI  

(%) 
L 

index 
Losses 2 

(p.u) 
Corresponding 

Result to 
Best: 

CI 4.3971  1.0000  83.6667 0.0782    0.342475  
PI 5.6984  1.0000  33.6667 0.0748    0.346712  
SI 4.3971  1.0000  83.6667 0.0782    0.342475  

1: Base Cost = 100000 $ , 2: Base Power = 100 MVA 
 

 
Figure 8. Pareto front of case 1 for IEEE 14-bus test system 

 

 
Figure 9. Output of fuzzy system, SI in case 1 for IEEE 14-bus test system 

Table 7. Calculated cost index with hybrid and PSO algorithms 
 

Cost index 1 (p.u) 
Hybrid approach PSO 

4.3971 8.2198 
                          1: Base Cost = 100000 $ 

 
A.2. Case 2: TCSC Only 

In order to find the best setting and placement of 
TCSC, both hybrid and PSO approach are executed with 
three different size of population. The size of the 
population is 100, 500 and 1000. In these cases both 
algorithms converge to the solution which is shown in 
table 8. Due to the constraint reversal, solution which is 
attained with both PSO and hybrid algorithms, is infeasible. 

 
Table 8. Hybrid and PSO solutions of case 2 for bi-objective optimization 

 

 
Solution found by: 

PSO Hybrid approach 
Location 1 (Branch) 6-12 6-12 

Compensation Ratio 2 -0.0833 -0.0833 
L index 0.0700 0.0700 

Losses 3 (p.u) 0.340241 0.3402 
1: Line data in [14] , 2: Negative means operation in capacitive mode  
3: Base Power = 100 MVA 
 
A.3. Case 3: Coordinated SVC and TCSC 

Figures 10 and 11 show the graphical results 
produced by hybrid approach in case 3. The Pareto 
optimal set has 9 points and it can be seen that the 
obtained solutions are well distributed on trade-off 
surface; except some discontinuity, caused by discrete 
optimization. The solutions for giving the best objective 
functions are presented in Table 9. As it can be seen from 
this table, the solution of PSO and hybrid algorithms is 
exhibited. From Table 9, we can conclude that the 
placement of SVC at bus 11 with the reference set at -
16.6385 MVAR and TCSC in line 7-9 with considered 
compensation ratio to -0.5033, presents the best L 
Stability index with the reference of 0.0697.  
 

Table 9. Hybrid and PSO solutions of case 3 for bi-objective optimization 
 

 
 
 

Corresponding Solution to: Solution found by: 
Best L 
Index 

Best 
Losses 

PSO 
Hybrid 

approach 
Location 1 
(Bus No.) 

11 9 13 9 

Setting 2 (p.u) -16.6385 -11.8641 -18.2010 -12.7478 

Location 3 
(Branch) 

7-9 7-8 10-11 6-13 

Compensation 
Ratio 4 

-0.5033 -0.3002 -0.0076 -0.3699 

L index 0.0697 0.0741 0.0759 0.0725
Losses 5 (p.u) 0.346954 0.340687 0.350783 0.341615 
1: Bus data in [14] , 2: Positive means operation in capacitive mode 
3: Line data in [14] , 4: Negative means operation in capacitive mode 
5: Base Power = 100 MVA 

 
The installation of SVC at bus 9 with -11.8641 Mvar 

of reference and TCSC in line 7-8 provides the minimum 
Real power loss of 0.34068 pu. Based on the value of SI, 
the installation of SVC at bus 9 with -12.7478 Mvar and 
TCSC in line 6-13 with considered compensation ratio to 
-0.3699, is introduced as the best compromise solution 
throughout the Non-Dominated solutions set. In order to 
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compare the performance of the hybrid approach and 
PSO algorithm, it can be seen that to decrease the active 
power loss and L index, the performance of the proposed 
algorithm is better than the PSO’s one. Table 10 shows 
the numerical results corresponding to the best CI, PI and 
SI values. It can be seen that, the solution with the 
minimum CI value has maximum PI value and solution 
with the minimum PI value has the maximum CI value. 
 

 
 

Figure 10. Pareto front of case 3 for IEEE 14-bus test system 
 

 
Figure 11. Output of fuzzy system, SI in case 3 for IEEE 14-bus test system 

 
Also it can be concluded that, the compromise 

solution with the maximum SI value has the CI value 
bigger than the best CI value and smaller than CI value 
which the solution with the best PI value has. The 
converse matter is established between PI value of the 
final solution and its corresponding values in this table. 
So it can be concluded that the hybrid algorithm has a 
good ability to maintain a relative balance between 
technical and economic aspects of the problem. It should 
be noted that the solution with the minimum CI value is 
justified from economical viewpoint and the solution 
with the minimum PI value is justified from technical 
viewpoint. Also in term of CI value comparison between 
hybrid approach and PSO algorithm, we can conclude 
hybrid algorithm has better performance than PSO 
algorithm. The presented results are verified in Table 11. 

Table 10. Corresponding objectivefunctions to those solutions with the 
best CI, PI and SI for case 3 

 

 
CI 1

 (p.u) 
PI SI  

(%) 
L 

index 
Losses 2 

(p.u) 
Corresponding 

Result to 
Best: 

CI 2.8856 1.0196 16.3333 .0739 0.341124
PI 4.0397 0.6453 69.0680 0.0703 0.343823
SI 3.3908 0.7706 70.8319 0.0725 0.341615

1: Base Cost = 100000 $ , 2: Base Power = 100 MVA 
 

Table 11. Calculated cost index with hybrid and PSO algorithms 
 

Cost index 1 (p.u) 
Hybrid approach PSO 

3.3908 7.4626 
                               1: Base Cost = 100000 $ 
 
B. IEEE 30-Bus 
 
B.1. Case 1: SVC Only 

Figures 12 and 13 show the graphical results 
produced by hybrid approach in case 1. The Pareto 
optimal set has 135 points and in order to simplify the 
solutions demonstration, only 100 points are displayed. It 
can be seen that the obtained solutions are well 
distributed on trade-off surface; except some 
discontinuity, caused by discrete optimization. The 
solutions for giving the best objective functions are 
presented in Table 12. As it can be seen, the solution of 
PSO and hybrid algorithms is exhibited. From Table 12, 
we can conclude that the placement of SVC at bus 27 
with the reference set at 12.1456 MVAR presents the best 
L stability index with the reference of 0.1252. The 
installation of SVC at bus 27 with 10.6168 MVAR of 
reference presents the minimum real power loss of 
0.434268 pu. Based on the value of SI, the installation of 
SVC at bus 27 with 11.0170 MVAR is considered as 
the best compromise solution throughout the Non-
Dominated solutions set.  

In order to compare the performance of the hybrid 
approach and PSO algorithm, it can be seen that the 
proposed algorithm is able to decrease Real power loss 
more, but to decrease the L stability index of the system, 
PSO algorithm has better performance. Table 13 shows 
the numerical results corresponding to the best CI, PI and 
SI values. It can be seen that, the solution with the 
minimum CI value has the maximum PI value and the 
solution with the minimum PI value has the maximum CI 
value. Also it can be concluded that, the compromise 
solution with the maximum SI value has the CI value 
bigger than the best CI value and smaller than CI value 
which the solution with the best PI value has.  

The converse matter is established between PI value 
of the final solution and its corresponding values. So it 
can be concluded that the hybrid algorithm has a good 
ability to maintain a relative balance between technical 
and economic aspects of the problem. It should be noted 
that the solution with the minimum CI value is justified 
from economical viewpoint and the solution with the 
minimum PI value is justified from technical viewpoint. 
From Table 14, in order to compare the performance of 
both hybrid an PSO algorithms based on CI value, it is 
observed that hybrid algorithm has a better performance 
than to PSO’s one. 
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Figure 12. Pareto front of case 1 for IEEE 30-bus test system 

 

 
Figure 13. Output of fuzzy system, SI in case 1 for IEEE 30-bus test system 
 
B.2. Case 2: TCSC Only 

Figures 14 and 15 show the graphical results 
produced by hybrid approach in case 2. The Pareto 
optimal set has 157 points and in order to simplify the 
solutions demonstration, only 100 points are displayed.  
 

Table 12. Hybrid and PSO solutions of case 1 for bi-objective 
optimization 

 

 
 
 

Corresponding Solution to: Solution found by: 
Best L 
Index 

Best 
Losses 

PSO 
Hybrid 

approach 
Location 1 
(Bus No.) 

27 27 27 27 

Setting 2 (p.u) 12.1456 10.6168 11.8236 11.0170 
L index 0.1252 0.1266 0.1254 0.1262 

Losses 3 (p.u) 0.434412 0.434268 0.434373 0.434296 
1: Bus data in [15] , 2: Positive means operation in capacitive mode 
3: Base Power = 100 MVA 
 
Table 13. Corresponding objectivefunctions to those solutions with the 

best CI, PI and SI for case 1 
 

1: Base Cost = 100000 $ , 2: Base Power = 100 MVA 
 

Table 14. Calculated cost index with hybrid and PSO algorithms 
 

Cost index 1 (p.u) 
Hybrid approach PSO 

0.1417 0.3160 
                               1: Base Cost = 100000 $ 
 

It can be seen that the obtained solutions are well 
distributed on trade-off surface; except some 
discontinuity, caused by discrete optimization. The 
solutions for giving the best objective functions are 
presented in Table 15. As it can be seen, the solution of 
PSO and hybrid algorithms is exhibited. From Table 15, 
we can conclude that the placement of TCSC in line 27-
28 with considered compensation ratio to -0.3409 
presents the best L index of 0.1226. The installation of 
TCSC in line 25-26 with considered compensation ratio 
to -0.2743 presents minimum Real power loss of 
0.440607 pu. Based on the value of SI, the installation of 
TCSC in line 27-28 with considered compensation ratio 
to -0.1232 is considered as the best compromise solution 
throughout the Non-Dominated solutions set.  

In order to compare the performance of the hybrid 
approach and PSO algorithm, it can be seen that the 
proposed algorithm is able to decrease Real power loss 
more, but to decrease the L stability index, PSO 
algorithm has better performance. Table 16 shows the 
numerical results corresponding to the best CI, PI and SI 
values. It can be seen the solution with the minimum CI 
value, has the maximum PI value and the solution with 
the minimum PI value has the maximum CI value. Also it 
can be concluded that, the compromise solution with the 
maximum SI value has the CI value bigger than the best 
CI value and smaller than CI value which the solution 
with the best PI value has.  

The converse matter is established between PI value 
of the final solution and its corresponding values. So it 
can be concluded that the hybrid algorithm has a good 
ability to maintain a relative balance between technical 
and economic aspects of the problem. It should be noted 
that the solution with the minimum CI value is justified 
from economical viewpoint and the solution with the 
minimum PI value is justified from technical viewpoint. 
From Table 17, in order to compare the performance of 
the foregoing algorithms based on CI value, it is observed 
that hybrid algorithm has a better performance than to 
PSO’s one. 

 
Figure 14. Pareto front of case 2 for IEEE 30-bus test system 
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 CI 1 (p.u) PI SI (%) L index Losses 2 (p.u)

Corresponding 
Result to 

Best: 

CI 0.0586 1.0000 16.3333 0.1266 0.434268 

PI 0.2172 0.8998 66.4390 0.1259 0.434327 

SI 0.1417 0.9224 74.8814 0.1262 0.434296 
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Figure 15. Output of fuzzy system, SI in case 2 for IEEE 30-bus test system 
 

Table 15. Hybrid and PSO solutions of case 2 for bi-objective 
optimization 

 

 
 
 

Corresponding Solution to Solution found by 
Best L 
Index 

Best 
Losses 

PSO 
Hybrid 

approach 
Location 1 
(Branch) 

27-28 25-26 27-28 27-28 

Compensation 
Ratio 2 

-0.3409 -0.2743 -0.2417 -0.1232 

L index 0.1226 0.1421 0.1286 0.1354 
Losses 3 (p.u) 0.441042 0.440607 0.440795 0.440642 

1: Line data in[15] , 2: Negative means operation in capacitive mode 
3: Base Power = 100 MVA 
 
Table 16. Corresponding objectivefunctions to those solutions with the 

best CI, PI and SI for case 2 
 

1: Base Cost = 100000 $ 
2: Base Power = 100 MVA 

 
Table 17. Calculated cost index with hybrid and PSO algorithms 

 

Cost index 1 (p.u) 
Hybrid approach PSO 

0.0238 0.0912 
                                   1: Base Cost = 100000 $ 

 
B.3. Case 3: Coordinated SVC and TCSC 

Figures 16 and 17 show the graphical results 
produced by hybrid approach in case 3. The Pareto 
optimal set has 25 points and Iit can be seen that the 
obtained solutions are well distributed on trade-off 
surface; except some discontinuity, caused by discrete 
optimization. The solutions for giving the best objective 
functions are presented in Table 18. As it can be 
seen, the solution of PSO and hybrid algorithms is 
exhibited. From Table 18, we can conclude that the 
placement of SVC at bus 27 With the reference set at 
12.0752 MVAR and TCSC in line 22-24 with 
considered compensation ratio to -0.2300, presents the 
best L index of 0.1248. The installation of SVC at bus 27 
with 10.6471 MVAR of reference and TCSC in line 15-
23 with considered compensation ratio to -0.1913 
presents the minimum Real power loss of 0.434252 pu.  

 
 

Figure 16. Pareto front of case 3 for IEEE 30-bus test system 
 

 
Figure 17. Output of fuzzy system, SI in case 3 for IEEE 30-bus test 

system 
 
Table 18. Hybrid and pso solutions of case 3 for bi-objective optimization 

 

 
 
 

Corresponding Solution to Solution found by 
Best L 
Index 

Best 
Losses 

PSO 
Hybrid 

approach 
Location 1 
(Bus No.) 27 27 27 27 

Setting 2 (p.u) 12.0752 10.6471 11.3568 10.9990 
Location3  
(Branch) 22-24 15-23 27-28 15-23 

Compensation 
Ratio 4 -0.2300 -0.1913 -0.2716 -0.2313 

L index 0.1248 0.1263 0.1129 0.1259 
1: Bus data in [15] , 2: Positive means operation in capacitive mode 
3: Line data in [15] , 4: Negative means operation in capacitive mode 
5: Base Power = 100 MVA 

 
Table 19. Corresponding objectivefunctions to those solutions with the 

best CI, PI and SI for case 3 
 

 

1: Base Cost = 100000 $ , 2: Base Power = 100 MVA 
 

Table 20. Calculated cost index with hybrid and PSO algorithms 
 

 

Cost index 1 (p.u) 
Hybrid approach PSO 

0.1373 0.4137 
                                   1: Base Cost = 100000 $ 
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 CI 1 (p.u) PI SI (%) L index Losses 2 (p.u)

Corresponding 
Result to 

Best: 

CI 0.0004 1.0000 16.3333 0.1421 0.440607 

PI 0.0515 0.7024 73.8404 0.1321 0.440701 

SI 0.0238 0.7397 80.8496 0.1354 0.440642 

 CI 1 (p.u) PI SI (%) L index Losses 2 (p.u)

Corresponding 
Result to 

Best: 

CI 0.0647 1.0000 42.7558 0.1263 0.434252 

PI 0.2463 0.8257 59.7350 0.1254 0.434319 

SI 0.1373 0.8720 76.4498 0.1259 0.434274 
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Based on the value of the SI, the installation of the 
SVC at bus 27 with 10.9990 Mvar and TCSC in line 15-
23 with considered compensation ratio to -0.2313, is 
considered as the best compromise solution throughout 
the Non-Dominated solutions set. In order to compare the 
performance of the hybrid approach and PSO 
algorithm, it can be seen that the proposed algorithm is 
able to decrease L stability more, but to decrease the Real 
power loss of the system, PSO algorithm has better 
performance. Table 19 shows the numerical results 
corresponding to the best CI, PI and SI values. It can be 
seen that, the solution with the minimum CI value has the 
maximum PI value and the solution with the minimum PI 
value has the maximum CI value.  

Also it can be concluded that, the compromise 
solution with the maximum SI value has the CI value 
bigger than the best CI value and smaller than CI value 
which the solution with the best PI value has. The 
converse matter is established between PI value of the 
final solution and it’s corresponding values So it can be 
concluded that the hybrid algorithm has a good ability to 
maintain a relative balance between technical and 
economic aspects of the problem. It should be noted that 
the solution with the minimum CI value is justified from 
economical view point and the solution with the 
minimum PI value is justified from technical viewpoint. 
From the table 20, in order to compare the performance 
of both hybrid an PSO algorithms based on CI value, it is 
observed that hybrid algorithm has a better performance 
than to PSO’s one. 
 

VII. CONCLUSIONS 
So far, the implemented method for the resolution of 

the FACTS allocation problem has been oriented to 
economical or technical aspects separately. The present 
paper makes use of recent advances in bi-objective 
evolutionary algorithms to develop a method for the 
combinatorial optimal allocation of FACTS into power 
systems. Optimizations were performed on two 
parameters: the locations of FACTS devices, and their 
rates. The implementation of the proposed hybrid 
algorithm has performed well when it was used to 
characterize POF of the FACTS optimal location 
problem.  

The diversity of non-dominated solutions is 
maintained by using the mechanism of crowding 
distance. In order to select the best compromise solution a 
novel regime which is based on Fuzzy mechanism was 
proposed. Three cases of FACTS device placement are 
conducted using the IEEE 14-bus and 30-bus systems. As 
an illustrative example, an optimal location solution was 
compared using conventional PSO algorithm which 
confirmed the effectiveness of the proposed method.  

The results show that hybrid approach provides well-
distributed non-dominated solutions and well exploration 
of the research space. Moreover the method does not 
impose any limitation on the number of objectives.  
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