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Abstract- Dynamic economic dispatch (DED) is one of 
the most significant non-linear problems in power 
systems. The purpose is determining the optimal power 
outputs of available generating units in order to meet the 
load demand subject to satisfying various operational 
constraints over a certain period of time. In real power 
systems, the valve-point effects should be considered that 
makes the DED a non-smooth and non-convex 
optimization problem. In this paper a Directed Searching 
Optimization (DSO) algorithm is used to solve the DED 
where the valve-point effects, ramp-rate limits, power 
losses and initial power of units are taken into account. A 
renewable energy source and its impact are analyzed, too. 
A five-unit test system for a period of 24-hours is studied 
to validate efficiency of the used method. The results are 
compared with other approaches and demonstrate the 
superiority of the proposed method. 
 
Keywords: Directed Searching Optimization (DSO) 
Algorithm, Dynamic Economic Dispatch (DED), 
Renewable Energy Sources, Practical Constraints. 
 

I. INTRODUCTION                                                                         
Dynamic economic dispatch (DED) is one of the major 

optimization issues in power system operations. Its 
objective is to schedule the available generator outputs 
with the predicted load demands over a certain period of 
time in order to operate in the best economical manner, 
while taking into consideration various operational 
equality and inequality constraints. The DED considers 
additional practical constraints such as upper and lower 
bounds on the ramp-rate limits of units because in real 
power systems, generating units will not respond to 
instantaneous load variations. In addition, considering the 
valve-point effects makes the DED problem a non-smooth 
and non-convex optimization problem. 

Many kinds of methods have been proposed for 
solving the DED problem in literatures. Classical methods 
used deterministic techniques such as non-linear 
programming [1] and dynamic programming [2] to solve 
this problem. However, these methods may cause the 

dimensions of the DED problem to become extremely 
large when applied on large power systems, therefore 
requiring enormous computational efforts.  

Over the last decades there has been a growing 
interest in algorithms inspired from the observation of 
natural phenomenon. It has been shown by many 
researches that these algorithms are good replacement as 
tools to solve complex computational problems [3]. 
Genetic Algorithm (GA) in [4], Particle Swarm 
Optimization algorithms (PSO) [5-7], Enhanced Bee 
Swarm Optimization (EBSO) [8], Simulated  Annealing 
(SA) [9], Evolutionary Programming (EP) [10], Artificial 
Bee Colony (ABC) [11], and Quantum Evolutionary 
Algorithm (QEA) [12] have been used to obtain global or 
near global optimum solutions for DED problems. These 
methods are good for global searching due to their 
capability of exploring and finding promising regions in 
the search space at advantageous time, and they overcome 
the main limitations of deterministic techniques, e.g., 
getting trapped in local  optimum. 

In recent years, with increasing fuel prices and   
environmental concerns, the governments all over the 
world has interested towards renewable energy sources, 
e.g. wind, tidal, and photovoltaic. Many countries set up 
their renewable energy target. Due to clean and 
economical energy generation, a huge number of wind 
farms are going to be connected with the existing network 
in the near future. The wind farms produce uncontrollable 
and fluctuated power because of the stochastic nature of 
wind. It degrades their applicability as dispatch options 
[13]. Despite that, according to the Global Wind Energy 
Council (GWEC) [14], the global cumulative installed 
wind capacity is increasing exponentially (Figure 1). 

In this paper, we used a Directed Searching 
Optimization algorithm (DSO) to solve the DED problem 
including practical constraints, e.g., the valve-point 
effects, ramp-rate limits, power losses, and initial powers. 
The proposed algorithm includes two important operations 
position updating and genetic mutation. The former can 
enhance the convergence of the DSO, and the latter can 
improve the capability of escaping from the local 
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optimum. An attempt to integrate a renewable resource 
and analyze its impact is considered. To validate 
competence of the proposed method, a five-unit test 
system for a period of 24 hours is studied. The results are 
compared with other approaches and demonstrate the 
superiority of the proposed method. 

The paper is organized as follows: Section II offers 
the mathematical formulation of the DED problem. The 
used DSO algorithm for the DED problem is described in 
Section III. The results and comparative study are 
presented in Section IV. The conclusions are shown in 
Section V. 
 

 
Figure 1. Global installed wind capacity [14] 

 

II. MATHEMATICAL DESCRIPTION           
 
A. Objective Function 

The main goal of the DED problem is to minimize the 
following cost function: 

 
1 1

min
T N

t
i i

t i

F =  f P
 
  (1) 

where, F is the total generating cost over the whole 
dispatch period, fi(Pi) is fuel cost function of ith generator, 
T is the number of intervals in the scheduled horizon, N is 
the number of available units and Pi

t is the real power 
output of the ith generator at time t. With considering the 
valve-point effects, the above cost function is 
approximated by the absolute value of the sinusoidal 
function witch is superimposed on the quadratic fuel cost 
function as follows: 

    2
,minsini i i i i i i i i i if P a b P c P d g P P        (2) 

where, ai , bi and ci are the cost coefficients, di and gi are 
constants from the valve-point effect of the ith generating 
unit, and Pi,min is minimum power output of ith unit in MW. 
 
B. Constraints 

The equality and inequality constraints are as follows: 
 Real Power Balance 

1

   ,    1,  2, ...,
N

t t t
i D L

i

P P P t =  T


    (3) 

Integration of a renewable energy source (RES) 
modifies equality constraint function to be as follow [11]: 
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N M
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where, PD
t  and PL

t are the load demand and system losses 
at  time t respectively in MW. The multiplier µRES is set to 
a permissible amount of active power injected by RES, 

PRES
t is the forecasted real power from RES at time t, and 

M is the number of RES. We assume the multiplier µRES is 
set to one, in this paper. 

The transmission power losses at time t can be 
calculated as follows: 

1 1

   ,   1, 2, ..., 
N N

t t t
L i ij j

j i

P P B P t = T
 

   (5) 

where, Pi
t and Pj

t are the real power output of the ith and 
jth generating unit at time t, respectively, and Bij is the loss 
coefficients matrix. 
 Real Power Generation Limit 

For unflinching operation, the generator outputs are 
restricted by lower and upper limits as follows: 

,min ,maxi i iP P P   (6) 

where, Pi,max is maximum power output of ith unit in MW. 
 Generating Unit Ramp-Rate Limit 

The actual operation of online generating unit range is 
limited by its ramp rate limits which can affect the 
operation of generating unit. The operational decision at 
the current hour may impact the operational decision at 
the later hour due to ramp rate limits. Due to variation in 
power demand from present hour to next hour three 
possible cases (steady state, increasing and decreasing 
operation conditions) exist in actual operation. First, 
during the steady state operation condition, the operation 
of the available unit is in steady state condition. Second, 
if the power demand is raised, the power generation of 
the generator also increased. Third, if power demand is 

reduced then power generation of generator also decreased. 
The generator constraints due to ramp rate limits of 

ith generating units are as follows: 
1

1

, 1, 2, ..., 
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t t
i i i

t t
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where, URi and DRi are the ramp-up and ramp-down-rate 
limits of ith unit, respectively. We should incorporate the 
real power output limit constraints (6) in the constraints 
of ramp-rate limits of units (7) to obtain the real power 
output of ith unit at time t [15], as follows: 

1
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 (8) 

 Initial Power 
At the beginning of the schedule, initial power of all 

the units must be taken in to account. This constraint has 
not been considered at the many previous papers. 
 

III. DIRECTED SEARCHING OPTIMIZATION 
ALGORITHM 

We used an efficient algorithm named Directed 
Searching Optimization algorithm (DSO) to get feasible 
solutions of high quality for DED problem [16]. In short, 
the DSO algorithm works as follows: 
i. Initialize the algorithm parameter  

This algorithm consists of six parameters that are: The 
population size (PS), or the number of solution vectors; 
maximal number of iterations (k), or stopping criterion; 
forward probability Pα; forward coefficient α; backward 
coefficient β, and genetic mutation probability Pm. 
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ii. Initialize the population 
The initial population is generated from a uniform 
distribution in the ranges [xiL, xiU] (i=1,2,…,N): 

1 1 1
1 2

2 2 2
1 2

1 1 1
1 2

1 2

                    

                   

                              

         

                

N

N

op

PS PS PS
N

PS PS PS
N
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where,  xi
j is the ith component of the jth (j =1,2,...,PS) 

candidate solution vector. 
iii. Update non-best solution vectors using position 
updating and genetic mutation. 
iv. Apply selection criterion. 
v. Save the best solution so far. 
vi. Check the stopping criterion, if it is satisfied, 
computation is terminated, otherwise step 'iv' is repeated. 
The pseudo code of updating solution vectors is as follows: 
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end

 

where, jg represents the index of the global best solution 
vector, Pα represents forward probability, α represents 
forward coefficient, β represents backward coefficient, Pm 
represents genetic mutation probability, and r is a random 
in the region  [0, 1]. xi

j(k) is the ith component of the jth 
position vector in the kth iteration, and xi

j(k+1) is its 
corresponding updated component, xi

jg(k) represents the 
ith component of the global best position vector in the kth 
iteration. xiL and xiU are the lower bound and the upper 
bound of the ith position component, respectively.    
Figure 2 shows the schematic diagram of position 
updating  which xi

j(k) locates at P, and xi
jg(k) locates at Q. 

xv locates at V, and it is on the forward extension line  of 
segment PQ. 

 
 

Figure 2. The schematic diagram of position updating 
 

Thus, the region between P and V is defined as 
forward region. xs locates at S, and it is on the backward 
extension line of segment PQ. Thus, the region between P 
and S is defined as backward region. In the PSO 
algorithm, the individuals are inclined to mimic their 
successful companions, which is beneficial to the 
convergence of the PSO. Inspired by the swarm 
intelligence of the PSO algorithm, in [16] is proposed a 
novel position updating strategy.  

According to this strategy, xi
j(k) is inclined to mimic 

xi
jg(k), so the forward region is selected as its main 

searching region which is actually a region near xi
jg(k). Pα 

is used to determine the updating strategy of xi
j(k): if Pα is 

satisfied, the forward region is considered, otherwise, the 
backward region is considered. The backward region is an 
auxiliary region, and it is used to slow down the rapid 
convergence of the DSO algorithm, which is beneficial to 
prevent the premature convergence of the DSO. The 
stepi

j(k) is defined  as adaptive step.  
In the early stage of optimization, all solution vectors 

are sporadic in solution space, so most adaptive steps, 
which is beneficial to the global search of the DSO 
algorithm; while in the late stage of optimization, most 
solution vectors are close to each other due to position 
updating. In this case, most adaptive steps are small, 
which is beneficial to the local search of the DSO 
algorithm; in short, dynamically adjusted stepi

j(k) keeps a 
balance between the global search and the local search for 
the DSO algorithm. 

Genetic mutation is also an efficient and necessary 
operation, for it can increase the diversity of individuals, 
which can effectively improve the performance of DSO in 
preventing premature convergence to local optimum. 

 
IV. SIMULATION RESULTS AND DISCUSSION  

 A 5-unit test system for DED problem is studied to 
demonstrate effectiveness of the DSO method for solving 
this problem with valve-point effects and ramp-rate 
limits. The parameters of the algorithm are tuned after 
trial-and-error experiments, and are as follows: forward 
probability Pα = 0.8, forward coefficient α = 1; backward 
coefficient β = 10 and genetic mutation probability          
Pm = 0.001. The load demand in each time and the data of 
units which is extracted from [9] are given in           
Tables 1 and 2. The dispatch horizon T is selected as one 
day with 24 hours. All the simulation are carried out by 
Matlab on an Intel(R) Core(TM) i7-2630QM personal 
computer with 2.00 GHz speed and 6.00GB RAM. The 
results are obtained after carrying out 30 independent 
runs, and are compared with those obtained using other 
well-known approaches in the literatures.  
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Penalty factor method is used to violation handling of 
equality constraints. Two test cases are examined, and the 
results are compared with those of other well-known 
methods. Maximum iteration number is 1000 for the 
tests. The integration of a renewable energy source is 
considered in the second test case and its impacts have 
been shown in tables and figures.  

 
Table 1. Load demand for the system 

 

Hour PD (MW) Hour PD (MW) 
1 410 13 704 
2 435 14 690 
3 475 15 654 
4 530 16 580 
5 558 17 558 
6 608 18 608 
7 626 19 654 
8 654 20 704 
9 690 21 680 

10 704 22 605 
11 720 23 527 
12 740 24 463 

 
Table 2. Data for 10-unit system 

 

U 
a 

($) 
b 

($/MW) 
c 

($/MW2) 
d 

($) 
Pmin 

(MW) 
Pmax 

(MW) 
UR 

(MW/h) 
DR 

(MW/h)
P0 

(MW) 

1 25 2 0.008 10 10 75 30 30 50.7118 

2 60 1.8 0.003 140 20 125 30 30 40.9004 

3 100 2.1 0.0012 160 30 175 40 40 100.0930

4 120 2 0.001 180 40 250 50 50 116.8943

5 40 1.8 0.0015 200 50 300 50 50 161.0431

 
The transmission loss coefficients matrix for the 

system is: 

5

4.9    1.4   1.5   1.5   2.0

1.4    4.5   1.6   2.0   1.8

10 1.5    1.6   3.9   1.0   1.2 

1.5    2.0   1.0   4.0   1.4 

2.0    1.8   1.2   1.4   3.5

ijB 

 
 
 
 
 
 
 
 

  (10) 

Two test cases are described as follows: 
 
A. Case Study 1 

This test case, considers a system with five thermal 
generating units to demonstrate the working of the DSO 
approach. Table 3 provides the comparison the CPU 
execution time, as well as the best, worst and average 
total fuel cost, and standard deviation using the proposed 
algorithm and the other recent well-known methods 
reported in the literature. It shows that the proposed DSO 
performs much better than earlier methods in solving the 
DED problem. The best achieved total cost using the 
proposed algorithm is $45,379.28 for the population size 
of 200. A significant reduction in the required CPU time 
was obtained. Although both Hybrid Harmony Search 
(HHS) [17] and Adaptive PSO methods have achieved 
better results (less operating fuel costs) than that of the 
DSO algorithm, they disregarded the initial power of 
generating units, therefore the ramp-rate limit has not 
been fulfilled properly in some cases, and relaxed the 
accepted value for violating the equality constraints.  

A high violation in equality constraint degraded the 
quality and practicality of the solutions by these two 
methods.  As shown in Table 4, the violation of equality 
constraints using the proposed algorithm is better than the 
ABC* and that is near to zero in every time (maximum 
violation is 0.00003 MW). Furthermore, Figure 3 shows 
that the dispatch schedule of the generating units is more 
consistent using the DSO compared with ABC* and other 
methods. 
 

Table 3. Comparing the performance of DSO with other methods 
 

Methods Min. ($) Avg. ($) Max. ($) Std. Dev. CPU (s)
HHS [17] 44,677.3 – – – – 
APSO [7] 43,154.9 – – – 308.4 
ABC [11] 51,102.8 51,462.8 51,868.9 229.2 280.4 
ABC* [11] 48,848.2 49,814.3 50,195.9 288.1 221.5 

SA [9] 47,356.0 – – – 351.9 
DSO 45,379.3 45,820.6 46,669.4 277.6 107.2 

 
Table 4. Comparison of results for case 1 

 

H 
APSO [7] ABC* [11] DSO Method 

Violation Ploss (MW) Violation Ploss (MW) Violation Ploss (MW)
1 0.00149     3.686 0.00009     3.687 0.00000     3.697 
2 0.00016     4.056 0.00003     4.150 0.00000     3.983 
3 0.01713     4.795 0.00008     4.854 0.00001     4.701 
4 0.00016     5.906 0.00002     5.959 0.00001     6.036 
5 0.00065     6.685 0.00009     6.579 0.00001     6.678 
6 0.00006     7.885 0.00001     7.798 0.00000     7.930 
7 0.00055     8.440 0.00002     8.271 0.00002     8.270 
8 0.00068     9.185 0.00005     9.034 0.00000     8.922 
9 0.00090   10.173 0.00010   10.152 0.00000   10.370 

10 0.00020   10.559 0.00000   10.489 0.00001   10.614 
11 0.00250   10.937 0.00010   10.891 0.00002   10.793 
12 0.00000   11.454 0.00000   11.552 0.00000   11.633 
13 0.00010   10.489 0.00000   10.379 0.00000   10.333 
14 0.00110   10.168 0.00000   10.067 0.00000   10.070 
15 0.00023     9.237 0.00005     9.251 0.00000     8.923 
16 0.00157     7.230 0.00010     7.147 0.00000     6.969 
17 0.03427     6.879 0.00006     6.656 0.00002     6.435 
18 0.00005     7.931 0.00004     7.875 0.00000     7.728 
19 0.00002     9.218 0.00001     9.096 0.00000     9.368 
20 0.00040   10.598 0.00000   10.552 0.00000   10.864 
21 0.00027     9.894 0.00009     9.819 0.00000     9.578 
22 0.00068     7.873 0.00007     7.577 0.00000     7.657 
23 0.00127     5.917 0.00003     5.760 0.00002     5.852 
24 0.00069     4.690 0.00002     4.466 0.00003     4.647 
Total Power 
loss (MW)   

193.890 192.067 192.062 

Total Operating   cost ($)  
              43,154.9 

48,848.200 45,379.280 

 
The detailed results of the best solution are shown in 

Table 5, which confirms all of the constraints were 
satisfied. 

 
Figure 3. Comparison of different algorithms violations for case 1
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Table 5. Best solutions obtained by the DSO for case 1               
(without wind power) 

 

 
B. Case Study 2 

Renewable energy sources usage increase in current 
power systems, therefore its impacts to conventional 
thermal unit should be investigated. In this test case, we 
consider the impact of integrating a renewable energy 
sources (wind power) on the system used in case 1. It 
assumed the wind-power farm supply 10% of the load 
demand. The DSO algorithm with the previous 
parameters is employed. As shown in Table 6, solving the 
DED by considering a renewable energy source decreases 
the total operating cost (6.29%) and the power losses of 
system (18.95%). In addition, a reduction in the required 
CPU time was obtained (28.66 s). The cost saving in the 
operation and power losses reduction is shown in     
Figure 4. The load demand, the total input power of 
system before and after integration of RES is shown in 
Figure 5. As shown in this figure, the power generation of 
units in the points of the peak load curve was decreased 
more. Generation of each unit in 24 hours before and 
after integration of RES (wind power) is shown in Figure 6.
                   

Table 6. Best solutions obtained by the DSO for case 2                    
(with wind power) 

 

H P1 (MW)   P2 (MW)  P3 (MW)    P4 (MW)    P5 (MW)  P 
1 33.456     70.828       83.018      72.536      111.982 371.821 
2 20.959   100.828       43.024      78.363      151.753 394.928 
3 50.940     71.707       81.910    124.909      101.837 431.303 
4 20.994     41.715     121.622    155.809      141.572 481.712 
5 21.314     71.712       84.740    142.431      187.382 507.578 
6 51.271     41.712     124.733      177.36      158.339 553.401 
7 60.295     63.765     164.733    172.818      108.340 569.952 
8 40.734     68.976     130.309    207.802      148.058 595.880 
9 10.857     98.410       90.340    242.155      187.819 629.582 

10 23.853     68.423     130.290    192.166      227.353 642.086 
11 53.853     98.423       92.688    225.801      186.299 657.065 
12 61.397   102.388     128.505    246.866      136.367 675.523 
13 31.915     72.581     166.020    196.866      174.562 641.945 
14 61.915   102.572     167.224    151.063      146.185 628.960 
15 31.959     72.572     127.242    178.742      185.326 595.841 
16 61.953   102.531       87.251    140.688      135.329 527.752 
17 32.998     72.541     127.216      99.537      175.139 507.431 
18 62.959     42.568     167.191      64.164      216.691 553.574 
19 40.006     51.090     132.974    114.164      257.738 595.973 
20 70.000     81.062       92.975    147.292      250.896 642.229 
21 40.012     76.865     132.969    169.060      200.898 619.804 
22 39.822     63.140       92.988    203.970      150.925 550.845 
23 69.815     93.134       53.028    160.204      103.036 479.217 
24 39.909     63.317       30.023    144.591      142.730 420.570 
Total Operating Cost ($)                                                      42,525.025 
Total Power Loss (MW)                                                           155.658 

 

 

 
Figure 4. Reduction in operating fuel cost and power losses due to 10% RES 

 
Figure 5. load demand and total input power supply before and after integration of RES 
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H P1 (MW)   P2 (MW)  P3 (MW)    P4 (MW)    P5 (MW)  P 
1 20.712     20.000      60.093     115.104    197.787 413.697 
2 12.384     22.830    100.093     155.888    147.787 438.983 
3 16.737     28.858    140.092     105.888    188.124 479.699 
4 10.352     58.786    100.092     138.917    227.888 536.036 
5 40.352     88.786      81.236     173.825    180.479 564.679 
6 11.914     58.966    116.659     208.152    220.239 615.930 
7 41.817     28.967    145.335     158.152    259.999 634.270 
8 71.817     58.332    132.407     188.625    211.740 662.921 
9 44.239     88.330      92.407     223.532    251.864 700.373 

10 67.814     58.330    123.313     173.532    291.624 714.613 
11 66.203     88.330    163.313     171.322    241.624 730.792 
12 66.612     89.079    127.017     206.230    262.695 751.633 
13 59.311     119.08    167.017     156.230    212.695 714.333 
14 55.948     89.150    127.021     175.495    252.454 700.069 
15 25.948     59.150    167.021     208.349    202.454 662.923 
16 55.943     89.150    128.007     158.382    155.487 586.969 
17 25.943     60.650    168.007     169.560    140.275 564.435 
18 55.941     47.241    128.049     204.461    180.035 615.728 
19 37.601     77.241      88.120     239.369    221.036 663.368 
20 67.601     107.24      79.622     189.369    271.030 714.864 
21 59.987     77.249    119.622     203.021    229.899 689.778 
22 29.988     107.25    142.488     153.021    179.911 612.657 
23 21.341     88.171    102.488     187.929    133.023 532.952 
24 41.385     58.171      62.488     222.837      83.023 467.905 
Total Operating Cost ($)                                                   45,379.280     
Total Power Loss (MW)                                                        192.062 
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Figure 6. Generation of each unit before and after integration of RES

V. CONCLUSIONS 
In this paper, we employed the DSO algorithm to solve 

the DED problem. In solving this problem, we considered 
the power losses, valve-point effects, ramp-rate limits, and 
initial power of generating units. Simulation results 
illustrate that the DSO algorithm has strong convergence 
due to the utilization of new position updating strategy. 
The results also illustrate that the DSO algorithm has 
strong capability of escaping from the local optimum due 
to the utilization of genetic mutation. Also, we analyzed 
the impacts of a renewable energy source on power losses 
and total operating cost of DED problem. There was a 
significant reduction in total operating cost and losses. 
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