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Abstract- In this paper, designing and application of an 

optimal supplementary controller for damping of power 

swing in a weakly connected power system. The 

proposed stabilizer is a SSSC based controller that is 

designed based on a hybrid PSO and GSA algorithm. The 

behavior of proposed controller under different loading 

operating conditions is also investigated. The 

effectiveness of proposed controller on enhancing 

dynamic stability is tested through modal analysis and 

time domain simulation. Also, nonlinear and electrical 

simulation results show the validity and effectiveness of 

the proposed control schemes over a wide range of 

loading conditions. It is also observed that the proposed 

SSSC based damping stabilizers greatly enhance the 

power system transient stability. The simulation results of 

coordinated design of stabilizer based on ψ and m is also 

presented and discussed. The system performance 

analysis under different operating conditions shows that 

the ψ-based controller is superior to the m-based 

controller. 

   

Keywords: Power System Dynamic Stability, SSSC, 

PSOGSA. 

 

I. INTRODUCTION                                        

The main priorities in a power system operation are 

its security and stability, so a control system should 

maintain its frequency and voltage at a fixed level, 

against any kind of disturbance such as a sudden increase 

in load, a generator being out of circuit, or failure of a 

transmission line because of factors such as human faults, 

technical defects of equipment, natural disasters, etc. Due 

to the new legislation of electricity market, this situation 

creates doubled stress for beneficiaries [1-2]. Low 

frequency oscillations that are in the range of 0.2 to 3 Hz 

are created by the development of large power systems 

and their connection. These oscillations continue to exist 

in the system for a long time and if not well-damped, the 

amplitudes of these oscillations increase and bring about 

isolation and instability of the system [3]. Using a Power 

System Stabilizer (PSS) is technically and economically 

appropriate for damping oscillations and increasing the 
stability of power system. Therefore, various methods 

have been proposed for designing these stabilizers [4-6].  

However, these stabilizers cause the power factor to 

become leading and therefore they have a major 

disadvantage which leads to loss of stability caused by 

large disturbances, particularly a three phase fault at the 

generator terminals [7]. In recent years, using Flexible 

Alternating Current Transmission Systems (FACTS) has 

been proposed as one of the effective methods for 

improving system controllability and limitations of power 

transfer. By modeling bus voltage and phase shift 

between buses and reactance of transmission line, 

FACTS controllers can cause increment in power transfer 

in steady state. These controllers are added to a power 

system for controlling normal steady state but because of 

their rapid response, they can also be used for improving 

power system stability through damping the low 

frequency oscillation [1-4], [7-9]. 

Static Synchronous Series Compensator (SSSC) is 

one of the important members of FACTS family which 

can be installed in series in the transmission lines. The 

SSSC is able to effectively control the power flow in 

power system. The reason for this effectiveness lies in its 

capability to change its reactance characteristic from 

capacitive to inductive, and vice versa [10]. Also, in order 

to improve the dynamic stability of power system, an 

auxiliary stabilizing signal can be added to the power 

flow control function of the SSSC [12]. In several 

references [10-13] the SSSC is used to stabilize 

frequency, enhance stability and damp power oscillation. 

In some other papers [13-14], the effect of compensation 

degree and operation mode of SSSC on small disturbance 

and transient stability is reported. Most of the proposals 

made in these papers are based on small disturbance 

analysis therefore it is necessary to linearize the system 

involved. Nevertheless, complex dynamics of the system 

cannot be fully captured by linear approaches especially 

during major disturbances. This brings about difficulties 

in tuning the FACTS controllers because an acceptable 

performance in large disturbances cannot be guaranteed 

by controllers tuned to provide desired performance at 

small signal condition. Therefore, because of its easy 

online tuning and also lack of assurance of the stability 

by some adaptive or variable structure techniques, a 

conventional lead/lag controller structure is usually 

preferred by the power system utilities.  
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The tuning problem of FACTS controller parameters 

is a complex issue. So far, various conventional 

approaches have been reported in the literature which 

considers the design problems of conventional power 

system stabilizers. These methods include: the eigenvalue 

assignment, mathematical programming, gradient 

procedure for optimization and also the modern control 

theory. Unfortunately, due to their iterative nature, 

conventional methods are time-consuming, require heavy 

computational burden and show slow convergence. 

Furthermore, the search process is susceptible to get stuck 

in local minima and consequently the solution obtained 

may not be optimal [15]. 

In this paper, singular value decomposition (SVD) is 

used to select the control signal which is most suitable for 

damping the electromechanical (EM) mode oscillations. 

A single machine infinite bus (SMIB) power system 

equipped with a SSSC controller is used in this study. 

Also the damping controllers design is formulated as an 

optimization problem to be solved using PSOGSA. The 

effectiveness of the proposed controller is demonstrated 

through eigenvalue analysis, nonlinear time simulation 

studies and some performance indices to damp low 

frequency oscillations under different operating 

conditions. Results show that the proposed PSOGSA 

based tuned damping controller achieves good robust 

performance for a wide range of operating conditions. 
 

II. PROPOSED ALGORITHMS 
 

A. Particle Swarm Optimization (PSO) 

PSO is an evolutionary computation technique which 

is proposed by Kennedy and Eberhart [16]. The PSO was 

inspired by the social behavior of bird flocking. It uses a 

number of particles (candidate solutions) which fly 

around in the search space to find the best solution. 

Meanwhile, the particles all look at the best particle (best 

solution) in their paths. In other words, particles consider 

their own best solutions as well as the best solution found 

so far. 

Each particle in PSO should consider the current 

position, the current velocity, the distance to pbest, and 

the distance to gbest in order to modify its position. PSO 

was mathematically modeled as follows: 
1

1

2

rand ( )+

rand ( )

t t t
i i i i

t
i i

v w v c pbest x

c gbest x

      

   
 (1) 

1 1t t t
i i ix x v    (2) 

where vt
i is the velocity of particle i at iteration t, w is a 

weighting function, cj is an acceleration coefficient, rand 

is a random number between 0 and 1, xt
i is the current 

position of particle i at iteration t, pbesti is the pbest of 

agent i at iteration t, and gbest is the best solution so far. 

The first part of (1), wvt
i, provides exploration ability for 

PSO. The second and third parts, c1×rand×(pbesti–xt
i) and 

c2×rand×(gbest–xt
i), represent private thinking and 

collaboration of particles respectively. The PSO starts by 

randomly placing the particles in a problem space. In 

each iteration, the velocities of particles are calculated 

using (1). After defining the velocities, the positions of 

particles can be calculated as (2). The process of 

changing particles’ positions will continue until an end 

criterion is met. 

 

B. Gravitational Search Algorithm (GSA) 

In 2009, Rashedi et al. [17] proposed a new heuristic 

optimization algorithm called the Gravitational Search 

Algorithm (GSA) for finding the best solution in problem 

search spaces using physical rules. The basic physical 

theory from which GSA is inspired is Newton theory, 

which says: ‘‘Every particle in the universe attracts every 

other particle with a force that is directly proportional to 

the product of their masses and inversely proportional to 

the square of the distance between them”. GSA can be 

considered as a collection of agents (candidate solutions) 

which have masses proportional to their value of fitness 

function. During generations all masses attract each other 

by the gravity forces between them. The heavier of the 

mass, has the bigger the attraction force. Therefore, the 

heaviest masses which are probably close to the global 

minimum attract the other masses in proportion to their 

distances. 

According to [17-18], suppose there is a system with 

N agents. The position of each agent (masses) which is a 

candidate solution for the problem is defined as follows: 
1( ) for 1 2d n

i i i iX x ,.....,x ,.....x i , ,...N   (3) 

where n is the dimension of the problem and xd
i is the 

position of the ith agent in the dth dimension. 

The algorithm starts by randomly placing all agents in 

a search space. During all epochs, the gravitational forces 

from agent j on agent i at a specific time t are defined as 

follows: 

( ) ( )
( ) ( ( ) ( ))

( )

pi ajd d d
ij j i

ij

M t M t
F G t x t x t

R t 
 


 (4) 

where Maj is the active gravitational mass related to agent 

j, Mpi is the passive gravitational mass related to agent i, 

G(t) is the gravitational constant at time t,  is small 

constant and Rij(t) is the Euclidian distance between two 

agents i and j. 

The gravitational constant G and the Euclidian 

distance between two agents i and j are calculated as 

follows: 

0( ) exp( )G t G iter/ maxiter     (5) 

2
( ) ( ), ( )ij i jR t x t x t  (6) 

where α is the descending coefficient, G0 is the initial 

gravitational constant, iter is the current iteration, and 

maxiter is the maximum number of iterations. In a 

problem space with the dimension d, the total force that 

acts on agent i is calculated by the following equation: 

1

( ) rand ( )
N

d d
i j ij

j , j i

F t F t
 

   (7) 

where randj is a random number in the interval [0,1]. 

According to the law of motion, the acceleration of an 

agent is proportional to the resultant force and inverse of 

its mass, so the accelerations of all agents are calculated 

as follows: 
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( )
( )

( )

d
d i
i

ii

F t
a t

M t
  (8) 

where d is the dimension of the problem, t is a specific 

time, and Mi is the mass of object i.  

The velocity and position of agents are calculated as 

follows: 

( 1) rand ( ) ( )d d d
i i i iv t v t a t     (9) 

( 1) ( ) ( 1)d d d
i i ix t x t v t     (10) 

where d is the problem dimension and randi is a random 

number in the interval [0,1]. 

As can be inferred from (9) and (10), the current 

velocity of an agent is defined as a fraction of its last 

velocity (0≤randi≤1) added to its acceleration. 

Furthermore, the current position of an agent is equal to 

its last position added to its current velocity. 

Agents’ masses are defined using fitness evaluation. 

This means that an agent with the heaviest mass is the 

most efficient agent. According to the above equations, 

the heavier of the agent, has the higher the attraction 

force and the slower the movement. The higher attraction 

is based on the law of gravity (4), and the slower 

movement is because of the law of motion (8) [17]. 

The masses of all agents are updated using the 

following equations: 

( ) ( )
( )

( ) ( )

i
i

fit t worst t
m t

best t worst t





 (11) 

where fiti(t) represents the fitness value of the agent i at 

time t, best(t) is the strongest agent at time t, and worst(t) 
is the weakest agent at time t. 

The best(t) and worst(t) for a minimization problem 

are calculated as follows: 

 1
( ) min ( )j

j ..N
best t fit t


  (12) 

 1
( ) max ( )j

j ..N
worst t fit t


  (13) 

The best(t) and worst(t) for a maximization problem 

are calculated as follows: 

 1
( ) max ( )j

j ..N
best t fit t


  (14) 

 1
( ) min ( )j

j ..N
worst t fit t


  (15) 

The normalization of the calculated masses (11) is 

defined by the following equation: 

1

( )
( )

( )

i
i N

jj

m t
M t

m t





 (16) 

In the GSA, at first all agents are initialized with 

random values. Each agent is a candidate solution. After 

initialization, the velocity and position of all agents will 

be defined using (9) and (10). Meanwhile, the other 

parameters such as the gravitational constant and masses 

will be calculated by (5) and (11). Finally, the GSA will 

be stopped by meeting an end criterion. The steps of GSA 

are represented in Figure 1. 

In all population-based algorithms which have social 

behavior like PSO and GSA, two intrinsic characteristics 

should be considered: the ability of the algorithm to 

explore whole parts of search spaces and its ability to 

exploit the best solution. Searching through the whole 

problem space is called exploration whereas converging 

to the best solution near a good solution is called 

exploitation. A population-based algorithm should have 

these two vital characteristics to guarantee finding the 

best solution. In PSO, the exploration ability has been 

implemented using pbest and the exploitation ability has 

been implemented using gbest. In GSA, by choosing 

proper values for the random parameters (G0 and α), the 

exploration can be guaranteed and slow movement of 

heavier agents can guarantee exploitation ability [17, 19]. 

Rashedi et al. [17] provided a comparative study 

between gsa and some well-known heuristic optimization 

algorithms like PSO. The results proved that GSA has 

merit in the field of optimization. However, GSA suffers 

from slow searching speed in the last iterations [20]. In 

this paper a hybrid of this algorithm with PSO, called 

PSOGSA, is proposed in order to improve this weakness.

 

Generate initial population
Evaluate the finness for all 

agents

Update the G, best(t) and 

worst(t) for the population

Update velocity and position Calculate M and a for all agents
Meeting end 

criterion?

Return the best solution

NO

Yes

 
 

Figure 1. General steps of the gravitational search algorithm [17] 

 

C. The Hybrid PSOGSA Algorithm 

The basic idea of PSOGSA is to combine the ability 

for social thinking (gbest) in PSO with the local search 

capability of GSA. In order to combine these algorithms, 

(17) is proposed as follows: 

1

2

( 1) ( ) rand ( )

rand ( )

i i i

t
i i

v t w v t c ac t

c gbest x

      

   
 (17) 
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where vi(t) is the velocity of agent i at iteration t ; c'j is an 

acceleration coefficient, w is a weighting function, rand is 

a random number between 0 and 1, aci(t) is the 

acceleration of agent i at iterationt, and gbest is the best 

solution so far. In each iteration, the positions of agents 

are updated as follows: 

( 1) ( ) ( 1)i i ix t x t v t     (18) 

In PSOGSA, at first, all agents are randomly 

initialized. Each agent is considered as a candidate 

solution. After initialization, the gravitational force, 

gravitational constant, and resultant forces among agents 

are calculated using (4), (5) and (7), respectively. After 

that, the accelerations of particles are defined as (8). In 

each iteration, the best solution so far should be updated. 

After calculating the accelerations and updating the best 

solution so far, the velocities of all agents can be 

calculated using (17). Finally, the positions of agents are 

updated by (18). The process of updating velocities and 

positions will be stopped by meeting an end criterion. 

The steps of PSOGSA are represented in Figure 2. 

To see how PSOGSA is efficient, the following 

remarks are noted: 

 In PSOGSA, the quality of solutions (fitness) is 

considered in the updating procedure. 

 The agents near good solutions try to attract the other 

agents which are exploring different parts of the search 

space. 

 When all agents are near a good solution, they move 

very slowly. In this case, gbest helps them to exploit the 

global best. 

 PSOGSA uses a memory (gbest) to save the best 

solution found so far, so it is accessible at any time. 

 Each agent can observe the best solution (gbest) and 

tend toward it. 

   By adjusting c'1 and c'2, the abilities of global searching 

and local searching can be balanced. 

The above-mentioned remarks make PSOGSA 

powerful enough to solve a wide range of optimization 

problems [21]. 

 

Generate initial population
Evaluate the finness for all 

agents

Update the G, best(t) and 

worst(t) for the population

Update velocity and position
Calculate M, forces and 

accelerations for all agents

Meeting end 

criterion?

Return the best solution (gbest)

No

Yes

 
 

Figure 2. Steps of PSOGSA [21] 
 

III. POWER SYSTEM MODEL 

A single-machine infinite-bus (SMIB) power system 

equipped with SSSC is investigated, as shown in Figure 3 

[9]. The SSSC consists of a boosting transformer with a 

leakage reactance xSCT, a three-phase GTO based voltage 

source converter (VSC), and a DC capacitor (CDC). The 

two input control signals to the SSSC are m and ψ. Signal 

m is the amplitude modulation ratio of the pulse width 

modulation (PWM) based VSC. Also, signal ψ is the 

phase of the injected voltage and is kept in quadrature 

with the line current (inverter losses are ignored). 

Therefore, the compensation level of the SSSC can be 

controlled dynamically by changing the magnitude of the 

injected voltage. Hence, if the SSSC is equipped with a 

damping controller, it can be effective in improving 

power system dynamic stability. 
 

 
 

Figure 3. SMIB power system with SSSC 

A. Nonlinear Model of Power System Implemented 

with SSSC 

The dynamic model of the SSSC is required in order to 

study the effect of the SSSC for enhancing the small 

signal stability of the power system. The system data is 

given in Appendix. By applying Park’s transformation 

and neglecting the resistance and transients of the 

transformer, the SSSC can be modeled as [12]: 

ts tsd tsq tsI I jI I      (19) 

cos sin

90

INV DC DCV mkV ( j ) mkV  

 

   

 
 (20) 

( cos sin )DC DC
DC tsd tsq

DC DC

dV I mk
V I I

dt C C
      (21) 

where k is the ratio between AC and DC voltage of SSSC 

voltage source inverter. 

And so:  

sin cosB DC
tsq

ts SB SCT q

V mkV
I

X X X X

 


  
 (22) 

cos sinq B DC
tsd

ts SB SCT d

E V mkV
I

X X X X

   


  
 (23) 

The nonlinear dynamic model of the power system of 

Figure 3 is [9]: 
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( 1)b     (24) 

1
( )m eP P D

M
     (25) 

1
( )q fd q

do

E' E E
T

 


 (26) 

1
( )A

fd fd ref t
A A

K
E E V V

T T
     (27) 

where: 
( )e q tsq q d tsd tsqP E I X X I I      

( )q q d d tsdE E X X .I      

2 2( ) ( )t q tsq q d tsdV X I E X I      

 

B. Power System Linearized Model 

By linearizing the SMIB system nonlinear differential 

equations including SSSC around the nominal operating 

point the following equations can be achieved: 

b      (28) 

( )eP D / M       (29) 

( )q q fd doE E E / T      (30) 

1
( )A

fd fd t
A A

K
E E V

T T
       (31) 

7 8 9DC q DC

dm d

V K K E' K V

K m K 





       

   
 (32) 

where: 

1 2e q pDC DC

pm p

P K K E K V

K m K 





       

   
 (33) 

4 3q q qDC DC

qm q

E K K E K V

K m K 





        

   
 (34) 

5 6t q vDC DC

vm v

V K K E K V

K m K 





       

   
 (35) 

where K1, K2, …, K9, Kpu, Kqu, Kdu and Kvu are 

linearization constants and are dependent on system 

parameters and the operating condition. The block 

diagram of the linearized dynamic model of the SMIB 

power system with SSSC  is shown in Figure 4.  
 

 
 

Figure 4. Modified Heffron-Phillips model of a SMIB system with SSSC 

X Ax Bu   (36) 

1 2

34

5 6

7 8 9

0 0 0 0

0

1
0

1
0

0 0

b

pDC

qDC

do do do do

A A A vDC

A A A A

KK KD

M M M M

KKK
A

T T T T

K K K K K K

T T T T

K K K

 
 
    
 
 
    
    
 
 
    
 
  

  

0 0

pm p

qm q

do do

A vA vm

A A

dm d

K K

M M

K K
B

T T

K KK K

T T

K K









 
 
  
 
 
     
 
 
  
 
 
 

 

 

C. SSSC Based Damping Controller 

The damping controller is designed to produce an 

electrical torque, according to the phase compensation 

method, in phase with the speed deviation. In order to 

produce the damping torque, the 2 control parameters of 

the SSSC (m and ψ) can be modulated. The speed 

deviation   is chosen as the input to the damping 

controller. Figure 5 shows the structure of the SSSC 

based damping controller. This controller may be 

considered as a lead-lag compensator. However, an 

electrical torque in phase with the speed deviation is to be 

produced to improve the damping of the power system 

oscillations. It consists of a gain block, signal-washout 

block, and lead-lag compensator. The parameters of the 

damping controller are obtained using the PSOGSA 

technique. 
 

  
 

Figure 5. SSSC with lead-lag controller 
 

IV. SSSC CONTROLLER DESIGN USING PSOGSA 

In the proposed method, the SSSC controller 

parameters must be tuned optimally to improve overall 

system dynamic stability in a robust way. This study 

employs the PSOGSA to improve optimization synthesis 

and find the global optimum value of the fitness function 
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in order to acquire an optimal combination. In this study, 

the PSOGSA module works offline. In other words, the 

parameters of the SSSC damping controller are tuned for 

different loading conditions and system parameter 

uncertainties based on Table 1, and then the obtained 

optimal parameters of the damping controller are applied 

to the time-domain simulation. 

 
Table 1. Loading condition 

 

Operating 

condition 
P (pu) Q (pu) XL (pu) 

Normal 0.8 0.114 0.3 

Light 0.2 0.01 0.3 

Heavy 1.2 0.4 0.3 

Case 4 
The 30% increase of line reactance XL at normal 

loading condition 

Case 5 
The 30% increase of line reactance XL at light 

loading condition 

Case 6 
The 30% increase of line reactance XL at heavy 

loading condition 

 

For our optimization problem, an integral time 

absolute error of the speed deviations is taken as the 

objective function J, expressed as: 

1

0

( )

t

J e t t dt   (37) 

where, ‘e’ is the error signal (∆ω) and t1 is the time range 

of  simulation. The optimization problem design can be 

formulated as the constrained problem shown below, 

where the constraints are the controller parameters 

bounds. 

min max

1min 1 1max 2min 2 2max

3min 3 3max 4min 4 4max

minimize

subject to

,

,

J

K K K

T T T T T T

T T T T T T

 

   

   

 (38) 

Typical ranges of the optimized parameters are         

[0-100] for K and [0.01-1] for T1, T2, T3 and T4. The 

mentioned approach employs the PSOGSA to solve this 

optimization problem and search for an optimal or near 

optimal set of controller parameters. It should be noted 

that PSOGSA algorithm is run several times and then 

optimal set of output feedback gains for the SSSC 

controllers is selected. The final values of the optimized 

parameters are given in Table 2. Figure 6 shows the 

illustration of cost versus iteration for both the m- and ψ-

based controllers using the PSO, GSA and PSOGSA 

techniques. 

 

 

Table 2. The optimal settings of the individual controller 
 

Controller parameters 
ψ controller

 
m controller

 

PSO GSA PSOGSA PSO GSA PSOGSA 

K 73.8019 62.6673 81.3002 84.3309 76.6433 83.9329 

T1 0.7008 0.3887 0.4363 0.9447 0.9347 0.8017 

T2 0.4822 0.7517 0.6890 0.1334 0.1201 0.3188 

T3 0.9978 0.1944 0.9257 0.3332 0.5180 0.8281 

T4 0.0669 0.0603 0.1119 0.0818 0.2554 0.0171 

 

 
(a) 

 
(b) 

Figure. 6. The convergence for objective function minimization using PSO, GSA and PSOGSA techniques:  

(a) ψ-based controller, (b) m-based controller 
 

V. SIMULATION RESULTS 

In order to demonstrate the effectiveness and robustness 

of the proposed controller, against severe turbulence and 

the damping of oscillations caused by it, power system 

using the proposed model, is simulated in MATLAB 

software. To make sure that the obtained results are 

reliable, this simulation is evaluated with eigenvalue 

analysis method and time domain nonlinear simulation, 

which is shown as follows. 

 

A. Eigenvalue Analysis 

The electromechanical modes and the damping ratios 

obtained for all operating conditions both with and 

without proposed controllers in the system are given in 

Tables 3 and 4. Given a complex eigenvalue, the damping 

ξ is defined as [5]:  

2 2




 
 


  (40)  
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When SSSC is not installed, it can be seen that some of 

the modes are poorly damped and in some cases, are 

unstable (highlighted in Tables 3 and 4). 

 

B. Nonlinear Time-Domain Simulation  

The single-machine infinite-bus system shown in 

Figure 3 is considered for nonlinear simulation studies. 

The 6-cycle, 3-phase fault at t = 1 sec, on the infinite bus 

has occurred, at all loading conditions given in Table 1, 

to study the performance of the proposed controller. The 

speed deviation and electrical power deviation based on 

the ψ and m controller in all different loading conditions 

are shown in Figures 7 and 8. It can be seen that the 

PSOGSA based SSSC controller tuned using the 

objective function achieves good robust performance and 

provides superior damping. 
From the above conducted tests, it can be concluded 

that ψ based damping controller is superior to the m 

based damping controller and enhance greatly the 

dynamic stability of power systems. 
 

Table 3. Eigenvalues and damping ratios of electromechanical modes with and without ψ controller 
 

          Controller 

Loading  
Condition 

without 

controller 

PSO 

controller 

GSA 

controller 

PSOGSA 

Controller 

Nominal loading 

condition 

Eigenvalue 
(damping ratio) 

-9.18 ± 11.41i, (0.626) 

0.0601 ± 4.107i, (-0.014) 

-1.5215 

-1.76 ± 4.123i, (0.3925) 

-2.94 ± 11.997i, (0.238) 

-33.63 ± 23.205i, (0.823) 
-1.72, -1.62,-107.87 

-1.854 ± 4.53i, (0.378) 

-2.658 ± 11.76i, (0.220) 

-34.47 ± 25.35i, (0.805) 
-1.66, -1.34,-109.92 

-2.43 ± 5.63i, (0.396) 

-2.12 ± 10.62i, (0.195) 

-35.89 ± 26.45i, (0.805) 
-1.89, -2.78,-109.78 

Light loading 

condition 
Eigenvalue 

(damping ratio) 

-9.671 ± 13.165i, (0.592) 

0.121 ± 4.1758i, (-0.028) 

-0.9890 

-1.63 ± 5.015i, (0.3091) 

-4.765 ± 7.56i, (0.5332) 
-15.65 ± 17.761i, (0.661) 

-1.765, -1.641, -104.757 

-1.55 ± 5.115i, (0.290) 

-4.615 ± 7.612i, (0.518) 
-14.34 ± 16.691i, (0.651) 

-1.635, -1.743, -105.82 

-2.23 ± 4.99i, (0.408) 

-4.563 ± 7.43i, (0.523) 
-16.64 ± 17.54i, (0.688) 

-2.43, -3.41, -107.32 

Heavy loading 
condition 

Eigenvalue 

(damping ratio) 

-8.123 ± 10.77i, (0.602) 

0.717 ± 5.211i, (-0.1363) 

-1.1290 

-1.52 ± 5.876i, (0.2504) 
-3.768 ± 8.25i, (0.4154) 

-92.63 ±19.23i, (0.979) 

-2.109,-16.643, -65.9657 

-1.67 ± 5.899i, (0.272) 
-3.836 ± 8.342i, (0.417) 

-94.33 ±20.654i, (0.976) 

-2.22,-16.353, -64.11 

-2.56 ± 6.33i, (0.374) 
-4.34 ± 7.452i, (0.503) 

-97.23 ±18.46i, (0.982) 

-2.12,-18.66, -70.81 

Case 4  loading 
condition 

Eigenvalue 

(damping ratio) 

-9.43 ± 12.32i, (0.607) 

0.0531 ± 4.74i, (-0.011) 

-1.221 

-1.116 ± 4.221i, (0.255) 

-2.41 ± 11.117i, (0.211) 

-30.13 ± 20.515i, (0.826) 
-1.21, -1.12, -101.34 

-1.231 ± 4.342i, (0.272) 

-2.44 ± 11.231i, (0.212) 

-31.43 ± 21.321i, (0.827) 
-1.33, -1.213, -100.52 

-2.21 ± 4.412i, (0.447) 

-2.24 ± 11.13i, (0.197) 

-33.73 ± 23.78i, (0.817) 
-1.87, -1.19, -109.43 

Case 5  loading 

condition 
Eigenvalue 

(damping ratio) 

-9.121 ± 12.35i, (0.594) 

0.23 ± 4.251i, (-0.054) 

-0.933 

-1.32 ± 5.154i, (0.248) 

-4.25 ± 7.123i, (0.512) 
-13.65 ± 15.361i, (0.664) 

-1.45, -1.431, -102.357 

-1.44 ± 5.425i, (0.256) 

-4.657 ± 7.543i, (0.525) 
-14.76 ± 15.987i, (0.678) 

-1.41, -1.44, -104.33 

-2.32 ± 6.112i, (0.354) 

-6.54 ± 6.65i, (0.701) 
-16.16 ± 15.47i, (0.722) 

-1.88, -1.46, -107.82 

Case 6  loading 
condition 

Eigenvalue 

(damping ratio) 

-8.313 ± 10.14i, (0.633) 

0.691 ± 5.131i, (-0.133) 

-1.329 

-1.22 ± 5.776i, (0.206) 
-3.166 ± 7.65i, (0.382) 

-90.54 ±18.73i, (0.979) 

-2.11,-15.63, -60.887 

-1.23 ± 5.778i, (0.208) 
-3.567 ± 7.89i, (0.411) 

-91.93 ±19.12i, (0.979) 

-2.10,-16.22, -58.89 

-2.12 ± 5.66i, (0.350) 
-5.45 ± 7.112i, (0.608) 

-97.23 ±21.15i, (0.977) 

-2.76,-18.89, -66.43 

 
Table 4. Eigenvalues and damping ratios of electromechanical modes with and without m controller 

 

          Controller 

Loding   
Condition 

without 

controller 

PSO 

controller 

GSA 

controller 

PSOGSA 

Controller 

Nominal loading 

condition 

Eigenvalue 
(damping ratio) 

-9.18 ± 11.41i, (0.626) 

0.0601 ± 4.107i, (-0.014) 

-1.5215 

-1.21 ± 5.654i, (0.2092) 

-1.64 ± 7.897i, (0.2033) 

-21.35 ± 19.38i, (0.7404) 
-1.54, -2.748, -101.65 

-1.32 ± 5.76i, (0.223) 

-1.66 ± 7.817i, (0.207) 

-21.95 ± 20.11i, (0.737) 
-1.59, -2.86, -102.15 

-2.72 ± 6.16i, (0.403) 

-1.93 ± 7.88i, (0.237) 

-23.55 ± 22.34i, (0.725) 
-1.89, -5.46, -104.44 

Light loading 

condition 
Eigenvalue 

(damping ratio)  

-9.671 ± 13.165i, (0.592) 

0.121 ± 4.1758i, (-0.028) 

-0.9890 

-1.68 ± 5.374i, (0.2983) 

-1.592 ± 7.104i, (0.2186) 
-14.79 ± 15.23i, (0.6966) 

-1.652, -3.873, -102.13 

-1.77 ± 5.734i, (0.294) 

-1.91 ± 7.34i, (0.251) 
-15.19 ± 16.11i, (0.686) 

-1.43, -3.92, -101.32 

-2.21 ± 5.334i, (0.382) 

-1.90 ± 7.31i, (0.251) 
-18.69 ± 16.54i, (0.748) 

-1.73, -4.97, -105.22 

Heavy loading 
condition 

Eigenvalue 

(damping ratio) 

-8.123 ± 10.77i, (0.602) 

0.717 ± 5.211i, (-0.1363) 

-1.1290 

-1.076 ± 4.98i, (0.2111) 
-3.654 ± 8.89i, (0.3801) 

-90.11 ± 11.40i, (0.992) 

-1.18, - 3.754, -30.543 

-1.66 ± 5.13i, (0.307) 
-3.45 ± 8.17i, (0.389) 

-90.67 ± 11.90i, (0.991) 

-1.69, - 3.44, -32.16 

-2.44 ± 5.323i, (0.416) 
-5.58 ± 8.87i, (0.532) 

-90.65 ± 11.94i, (0.991) 

-1.54, - 4.84, -45.21 

Case 4  loading 

condition 

Eigenvalue 
(damping ratio) 

-9.43 ± 12.32i, (0.607) 

0.0531 ± 4.74i, (-0.011) 

-1.221 

-1.13 ± 5.504i, (0.201) 

-1.44 ± 7.67i, (0.184) 

-20.55 ± 19.11i, (0.732) 
-1.14, -2.408, -100.15 

-1.55 ± 6.41i, (0.235) 

-2.34 ± 8.87i, (0.255) 

-22.19 ± 20.51i, (0.734) 
-1.58, -3.481, -105.45 

-1.99 ± 6.71i, (0.284) 

-2.64 ± 8.88i, (0.284) 

-28.23 ± 22.68i, (0.779) 
-1.88, -5.871, -107.25 

Case 5  loading 

condition 
Eigenvalue 

(damping ratio) 

-9.121 ± 12.35i, (0.594) 

0.23 ± 4.251i, (-0.054) 

-0.933 

-1.47 ± 5.21i, (0.271) 

-1.33 ± 6.98i, (0.187) 
-14.99 ± 15.33i, (0.699) 

-1.89, -3.73, -101.15 

-1.47 ± 5.21i, (0.271) 

-1.33 ± 6.98i, (0.187) 
-14.99 ± 15.33i, (0.699) 

-1.89, -3.73, -101.15 

-2.37 ± 5.46i, (0.398) 

-1.99 ± 7.128i, (0.268) 
-20.63 ± 17.45i, (0.763) 

-1.77, -5.56, -105.35 

Case 6  loading 

condition 

Eigenvalue 

(damping ratio) 

-8.313 ± 10.14i, (0.633) 

0.691 ± 5.131i, (-0.133) 

-1.32 

-1.172 ± 4.78i, (0.238) 

-3.127 ± 8.13i, (0.358) 

-91.43 ± 12.65i, (0.990) 

-1.32, - 3.55, -31.23 

-1.56 ± 4.898i, (0.303) 

-3.97 ± 8.43i, (0.426) 

-94.55 ± 13.94i, (0.989) 

-1.53, - 3.42, -32.15 

-2.35 ± 4.98i, (0.426) 

-4.37 ± 8.383i, (0.462) 

-98.65 ± 16.84i, (0.985) 

-1.66, - 6.62, -50.25 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 7. Dynamic responses for Δω, with ψ controller at: (a) normal, (b) light, (c) heavy, (d) case 4, (e) case 5, (f) case 6 loading conditions 
 

 

 
(a)  

 
(b) 

 
(c) 

 (d) 
 

(e) 
 

(f) 
 

Fig. 8. Dynamic responses for Δω, with m controller at: (a) normal, (b) light, (c) heavy, (d) case 4, (e) case 5, (f) case 6 loading conditions 
 

 

VI. CONCLUSIONS 

In this paper, damping of low-frequency oscillation 

by using a SSSC controller was investigated. The 

stabilizer was tuned to simultaneously shift the undamped 

electromechanical modes of the machine to the left side 

of the s-plane. An objective problem comprising the   

damping ratio of the undamped electromechanical modes 

was formulated to optimize the controller parameters. 

The design problem of the controller was converted into 

an optimization problem, The PSOGSA optimization 

technique has been proposed to design the SSSC 

controllers individually ψ and m coordinately.  

The PSO, GSA and PSOGSA have been utilized to 

search for the optimal controller parameter settings that 

optimize a damping ratio based objective function. The 

effectiveness of the proposed SSSC controller for 

damping of low-frequency oscillations in a power system 

were demonstrated by applying to a weakly connected 

power system subjected to a disturbance. The eigenvalue 

analysis and time-domain simulation results showed the 

effectiveness of the proposed controller in damping low-

frequency oscillations. The system performance analyses 

under different operating conditions show that the          

ψ-based controller is superior to the m-based controller. 
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APPENDIX 

The nominal parameters and operating condition of 

the system are listed in Table 4. 

 
Table 4. System parameters 

 

Generator 
   M =8 MJ/MVA 

   Xq=0.6 pu 

T'do=5.044 

X'd=0.3 pu 

Xd=1 pu 

D=4 

Excitation system    KA=80                        TA=0.05 s  

Transformers    XT=0.1 pu XSDT=0.1 pu  

Transmission line    XL=0.6 pu   

SSSC parameters 
   CDC=0.25 VDC=1 KS=1.2 

   TS=0.05 XSCT=0.15  
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