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Abstract- Urbanization, industrialization, rapid traffic 

growth, and increasing levels of anthropogenic emissions 

have resulted in a substantial deterioration of air quality 

over the globe. Global climate change due to Greenhouse 

gas (GHGs) emissions is an issue of international concern 

that primarily attributed to fossil fuels. In this study, 

Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO) techniques 

are applied for analyzing NOX emission in Iran based on 

the values of oil, natural gas, coal, and primary energy 

consumptions, as energy indicators. Linear and non-linear 

forms of equations are developed to forecast NOx 

emission using GA, PSO, and ACO. The related data 

between 1981 and 2009 were used, partly for installing 

the models (finding candidates of the best weighting 

factors for each model, 1981-2002) and partly for testing 

the models (2003-2009). Eventually, NOX emission in 

Iran is estimated up to year 2025. 
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I. INTRODUCTION 

NOX indirectly influences the radiation budget of the 

atmosphere through O3, which possibly represents            

10-15% of the total anthropogenic greenhouse radiative 

forcing in the atmosphere [1]. NOX also influences the 

oxidation capacity of the atmosphere through OH and 

nitrate. The O3 production in the troposphere is mainly 

due to the oxidation of CH4, CO and hydrocarbons in the 

presence of NOX [2]. The 1997 Kyoto protocol had the 

objective of reducing greenhouse gases (GHGs) which 

cause climate change. 

It demanded the reduction of GHG emissions to 5.2% 

lower than the 1990 level during the period between 2008 

and 2012. It came into force in 2005. Many countries 

have started to develop climate policies but scenario 

studies indicate that greenhouse gas emissions are likely 

to increase in the future in most world regions [3]. Global 

energy consumption and GHGs emission have increased 

rapidly in the past few years. 

In 2009, the primary energy consumption in Iran 
reached 2467 million barrels oil equivalent (BOE), with 

the total NOX emissions reaching 1,836 thousand tons [4]. 
Many studies are presented to propose some models to 
forecast future scenarios for energy demand and GHGs 
emission [5-16]. This study employs GA, ACO, and PSO 
techniques to forecast NOX emission due to energy 
consumption in Iran. 

 
II. GENETIC ALGORITHM (GA) 

Similarly, to the other Evolutionary Algorithms 
(EAs), canonical GAs use generational replacement. 
Popular alternatives are elitism and steady-state 
replacement [17-19]. In the first case, the best solution(s) 

are directly copied into the new population while in the 
second case only a fraction of the population is replaced 
at each generation. Both variants aim to improve the 
preservation of good genetic material at the expense of a 
reduced search space exploration. A comparison between 
the behavior of generational and steady-state replacement 

is given in [20]. 
Individuals are selected for reproduction with a 

probability depending on their fitness. Canonical GAs 
allocate the mating probability of each individual 
proportionally to its fitness (proportional selection) and 
draw the parents set (mating pool) through the roulette 

wheel selection procedure [21]. Other popular selection 
schemes are fitness ranking [22] and tournament selection 
[23]. For a comparison of selection procedure, the reader 
is referred to Goldberg and Deb [23]. Crossover is the 
main search operator in GAs, creating offspring’s by 
randomly mixing sections of the parental genome. 

The number of sections exchanged varies widely with 
the GA implementation. The most common crossover 
procedures are one-point crossover, two-point crossover 
and uniform crossover [19]. In canonical GAs, a 
crossover probability is set for each couple. Couples not 
selected for recombination will generate two offspring’s 

identical to the parents. A small fraction of the 
offspring’s are randomly selected to undergo genetic 
mutation. Mutation operator randomly picks a location 
from a bit-string and flips its contents. The importance of 
this operator in GAs is however secondary, and to the 
main aim of mutation is the preservation of the genetic 

diversity of the population.  
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GAs requires the tuning of some parameters such as 

the mutation rate, crossover rate and replacement rate in 

the case of steady-state replacement. This task is often 

not trivial as the chosen values may strongly influence the 

search process [24, 25]. Moreover, the optimal value for 

the GA parameters may vary according to the evolution 

of the search process. For all these reasons, several 

adaptive schemes have been investigated. A survey of 

adaptation in GAs is given in [26] proposed an off-line 

tuning approach giving an optimal mutation rate 

schedule. Problem specific operators are sometimes 

employed in addition to the canonical ones. The 

introduction of such operators results an increase in the 

search power of the algorithm but a loss of general 

applicability. This issue is analyzed in [27]. 

 

III. ANT COLONY OPTIMIZATION (ACO) 
In the early 1990s, Ant Colony Optimization (ACO) 

was introduced by Dorigo et al. as a novel nature-inspired 

meta-heuristic for the solution of combinatorial 

optimization problems [28]. The inspiring source of ACO 

is the foraging behavior of real ants. When searching for 

food, ants initially explore the area surrounding their nest 

in a random manner. When an ant finds a food source, it 

carries some of it back to the nest. During the return trip, 

ant deposits a chemical pheromone trail on the ground.  

The quantity of pheromone deposited guides other 

ants to the food source [29]. As shown by [30], indirect 

communication between the ants via pheromone trails 

enables them to find the shortest paths between their nest 

and food sources. The indirect communication 

mechanism where ants modify their environment to 

influence the behavior of other ants is referred to as 

stigmergy. This characteristic of real ant colonies is 

exploited in artificial ant colonies in order to solve 

combinatorial and continuous optimization problems. 

Although an ant colony exhibits complex adaptive 

behavior, a single ant exhibits a very simple behavior. An 

ant can be seen as a stimulus-response agent [29, 30], the 

ant observes pheromone concentrations and produces an 

action based on the pheromone-stimulus. An ant can 

therefore abstractly be considered as a simple 

computational agent. An artificial ant algorithmically 

models the simple behavior of real ants. 

The simple ACO can be formulated as follows [29]. If 

we define a combinatorial optimization problem that 

entails the minimization of a given error function, a 

candidate solution is defined as a sequence of parameters, 

and can be visualized as a path through several nodes, 

each node corresponding to one of the solution’s 

parameters. For more details about intelligent 

optimization techniques, the readers are referred to [31]. 

 

IV. PARTICLE SWARM OPTIMIZATION (PSO) 
The PSO algorithm works by attracting the particles 

to search space positions of high fitness. Each particle has 

a memory function, and adjusts its trajectory according to 

two pieces of information, the best position that it has so 

far visited, and the global best position attained by the 

whole swarm. 

If the whole swarm is considered as a society, the first 
piece of information can be seen as resulting from the 
particle’s memory of its past states, and the second piece 
of information can be seen as resulting from the 
collective experience of all members of the society. Like 
other optimization methods, PSO has a fitness evaluation 
function that takes each particle’s position and assigns it a 
fitness value. The position of highest fitness value visited 
by swarm is called global best. Each particle remembers 
the global best, and position of highest fitness value that 
has personally visited, which is called local best [32-35].  

Many attempts were made to improve the 
performance of the original PSO algorithm and several 
new parameters were introduced such as the inertia 
weight [32, 33]. The canonical PSO with inertia weight, 
which is used in this study, has become very popular and 
widely used in many science and engineering 
applications. In the canonical PSO, each particle i has 
position xi and velocity vi (the velocity of a particle 
represents the distance traveled from the current position) 
that is updated at each iteration according to Equation (1).  

   1 1 2 2i i i i i i g iv v c p x c p x        (1)  

where, ω is the inertia weight, ip  is best position found 

so far by particle ip , and gp is global best so far found 

by the swarm, 1  and 2 weights that are randomly 

generated at each step for each particle component, c1 and 

c2 are positive constant parameters called acceleration 

coefficients (which control the maximum step size the 

particle can achieve). 

The position of each particle is updated at each 
iteration by adding velocity vector to the position vector. 

i i ix x v   (2) 
The inertia weight w (which is a user-defined 

parameter), together with c1 and c2, are controls 
contribution of past velocity values to current velocity of 
particle. A large inertia weight biases the search towards 
global exploration, while a smaller inertia weight directs 
toward fine-tuning current solutions (exploitation). 
Suitable selection of the inertia weight and acceleration 
coefficients can provide a balance between the global and 
the local search [32]. The PSO algorithm is composed of 
five main steps: 
1. Initialize the position vector and associated velocity of 
all particles in the population randomly. Then set a 
maximum velocity and a maximum particle movement 
amplitude in order to decrease the cost of evaluation and 
to get a good convergence rate. 
2. Evaluate the fitness of each particle via fitness 
function. There are many options when choosing a fitness 
function and trial and error is often required to find a 
good one. 
3. Compare the particle’s fitness evaluation with the 
particle’s best solution. If the current value is better than 
previous best solution, replace it and set the current 
solution as the local best. Compare the individual 
particle’s fitness with the population’s global best. If the 
fitness of the current solution is better than the global 
best’s fitness, set the current solution as new global best.  
4. Change velocities and positions by using Equations (1) 
and (2). 
5. Repeat step 2 to step 4 until a predefined number of 
iterations is completed.  
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V. PROBLEM DEFINITION 
In this study, NOX emission in Iran was forecasted 

based on the oil, natural gas, coal, and primary energy 

consumption using GA, ACO, and PSO. For this purpose, 

following forms of equations (Linear and exponential) are 

developed: 

1 2 3 4 5linearxNO w OIL w NG w COAL w PE w      (3) 

exp

2 4
1 3

6 8
5 7 9

onential

w w
x

w w

NO w OIL w NG

w COAL w PE w

  

  

 (4) 

where, OIL, NG, COAL, PE are the oil, natural gas, coal 

and primary energy consumptions in Iran and wi are the 

corresponding weighting factors. The fitness function, 

F(x), takes the following form: 

1

min ( )
m

actual predicted
j

F x E E


   (5) 

where, Eactual 
and Epredicted are the actual and predicted 

values of NOX emission respectively, and m is the 

number of observations. 

The related data from 1981 to 2009 were used, partly 

for installing the models (finding candidates of best 

weighting factors for each model, 1981-2002) and partly 

for testing the models (2003-2009). These values are 

obtained from [4] and shown in Table 1. 

 

VI. RESULTS AND DISCUSSIONS 

 

A. Estimating Weighting Factors Values by PSO 

In this section for each algorithm (i.e. GA, ACO and 

PSO) a code was developed in Matlab 2010 (Math 

Works, Natick, MA) and applied for finding optimal 

values of weighting factors regarding actual data (1981-

2009). For this purpose, following stages were done: 

1. All input and output variables in Equations (3) and (4) 

were normalized in the (0, 1) range. 

2. The proposed algorithms were applied in order to 

determine corresponding weighting factors (wi) for each 

model. The related data from 1981 to 2002 were used in 

this stage. 

3. The best results (optimal values of weighting 

parameters) for each model were chosen according to     

stage 1 and less average relative errors in testing period. 

The related data from 2003 to 2009 were used in this 

stage. 

4. Forecasting models were proposed using the optimal 

values of weighting parameters.  

The best obtained weighting factors for GA, ACO, 

and PSO models (for the general forms of Equations (3) 

and (4)) are shown in Table 2 and Table 3 shows the 

comparison between the Actual and estimated values of 

NOX emission on testing period. As it can be seen in this 

table, the estimation models are in good agreement with 

the actual data but PSO-NOX,linear outperformed the other 

presented models. 

 

B. Future Projection 

In order to use obtained models for future projections, 

each input variable (i.e. oil consumption, natural gas 

consumption, coal consumption, primary energy 

consumption) should be forecasted in future time domain 

(2010-2025). To achieve this, the designed scenarios for 

future projection of each input variable remained the 

same scenarios, which were developed by [5]. Tables 4 

and 5 show the values of oil, natural gas, coal, and 

primary energy consumptions between 2010 and 2035 

based on the designed scenarios by [5]. Figure 1 and 2 

shows the comparison between different projection 

models for NOX emission based on scenarios I and II. 

 
Table 1. The values of oil, natural gas, coal, and primary energy 

consumption and related NOX emission [4] 
 

Year 

NOX 

emission 

(Tt)a 

Oil 

consumption 

 (Mboe)b 

NG 

consumption 

(Mboe) 

Coal 

consumption 

(Mboe) 

PE 

consumption 

(Mboe) 

1981 306.75 175.46 15.87 3.40 582.45 

1982 359.40 191.79 21.95 4.30 1033.34 

1983 400.68 232.72 25.16 6.00 1046.06 

1984 434.23 246.37 31.15 5.70 935.31 

1985 463.07 269.54 30.28 4.90 979.59 

1986 489.04 245.19 28.70 5.20 868.27 

1987 515.33 256.74 32.90 5.10 977.65 

1988 541.70 254.73 33.91 5.40 1024.97 

1989 569.39 276.02 45.03 6.00 1188.45 

1990 598.79 280.68 55.98 6.50 1340.55 

1991 629.90 300.45 73.84 7.40 1423.92 

1992 662.72 325.73 89.74 7.40 1535.96 

1993 696.80 355.32 99.30 8.10 1636.08 

1994 731.82 363.31 118.71 8.10 1691.83 

1995 767.41 350.13 140.87 7.70 1741.02 

1996 814.70 372.01 162.84 7.90 1753.02 

1997 842.18 384.88 175.94 8.30 1767.64 

1998 858.25 404.13 172.05 8.60 1790.63 

1999 892.05 381.80 203.54 8.30 1785.11 

2000 956.18 405.07 216.82 8.60 1858.32 

2001 994.42 396.78 224.60 7.80 1808.83 

2002 1056.75 405.68 253.45 7.90 1853.39 

2003 1111.25 415.74 277.55 8.30 2057.16 

2004 1168.39 431.02 320.25 8.40 2146.47 

2005 1256.22 462.64 344.05 8.60 2233.33 

2006 1346.57 495.86 399.09 8.79 2311.70 

2007 1378.96 516.37 470.97 8.70 2426.32 

2008 1808.55 533.47 475.24 8.90 2428.42 

2009 1836.27 538.52 519.69 9.00 2467.17 
a(Tt): Thousand tone 

b(Mboe): Million barrels oil equivalent 

 

VII. CONCLUSIONS 

This paper investigates the causal relationships among 

NOX emission and energy consumption, using GA, ACO 

and PSO techniques. 30 years data (1981-2009) were 

used for developing linear and exponential forms of 

estimation models. Validations of models show that the 

estimation models are in good agreement with the 

observed data but PSO-NOX,linear outperformed other 

developed models in this study. The results presented 

here provide helpful insight into energy system and NOX 

emission control modeling. They are also instrumental to 

scholars and policy makers as a potential tool for 

developing energy plans. Future work is focused on 

comparing the methods presented here with other 

available tools. Forecasting of NOX emission can also be 

investigated with Artificial Bee Colony, Bees Algorithm, 

or other meta-heuristic algorithms. The results of the 

different methods can be compared with the presented 

techniques in this study. 
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Table 2. The best obtained weighting factors by GA, ACO, and PSO for the general forms of Equations (3) and (4)  
 

Model w1 w2 w3 w4 w5 w6 w7 w8 w9 

GA-Nox linear 0.1801 0.7716 0.0314 -0.0092 0.0921 - - - - 

GA-Nox exponential 0.1701 0.2922 0.8273 1.001 0.4995 0.9887 -0.5466 0.5272 0.1388 

ACO-Nox linear 0.0399 0.9946 0.1056 -0.3671 0.2282 - - - - 

ACO-Nox exponential 0.9081 0.2118 0.7089 1.0624 0.2565 0.1437 -1.3138 0.128 0.4503 

PSO-Nox linear 0.7685 1.0095 0.5929 -1.5834 0.3838 - - - - 

PSO-Nox exponential -0.1657 0.924 0.659 1.2807 -0.0244 0.6809 0.3828 0.2135 0.0999 

 
Table 3. Comparison between the actual and estimated values of NOX emission on testing period (2003-2009) 

 

Years 2003 2004 2005 2006 2007 2008 2009 Average 

Actual Data (Tt) 1111.2 1168.4 1256.2 1346.6 1379 1808.6 1836.3 - 

GA exponential
 1133.4 1240.5 1308.4 1458.6 1626.2 1653.4 1771.9 - 

Relative error (%) 1.99 6.18 4.15 8.32 17.93 -8.58 -3.51 7.24 

GA linear
 1168.4 1281.3 1358.3 1512.3 1698.4 1719.7 1831.2 - 

Relative error (%) 5.14 9.67 8.13 12.31 23.16 -4.91 -0.28 9.08 

ACO exponential
 1107.3 1212 1281.1 1426.9 1604.7 1623.9 1734.3 - 

Relative error (%) -0.35 3.73 1.98 5.97 16.37 -10.21 -5.56 6.31 

ACO linear
 1085.9 1204.1 1267.2 1430.2 1632.4 1650.6 1784 - 

Relative error (%) -2.28 3.06 0.87 6.21 18.38 -8.73 -2.85 6.06 

PSO exponential
 1090.5 1205.9 1262.1 1412.6 1631.6 1636.6 1779.7 - 

Relative error (%) -1.87 3.21 0.46 4.9 18.32 -9.51 -3.08 5.91 

PSO linear
 1071.1 1170.6 1261.5 1463.1 1628.8 1700.3 1826.9 - 

Relative error (%) -3.61 0.19 0.42 8.65 18.11 -5.99 -0.51 5.35 

 
Table 4. Predicted values of oil, natural gas, coal, and primary energy 

consumptions between 2010 and 2035 based on Scenario I designed by [5] 
 

Year 
Oil 

consumption 

(Mboe) 

NG 
consumption 

(Mboe) 

Coal 
consumption 

(Mboe) 

PE 
consumption 

(Mboe) 

2010 571.97 566.79 9.18 2558.30 

2011 593.78 604.89 9.31 2628.98 

2012 615.59 642.98 9.43 2699.67 

2013 637.40 681.07 9.56 2770.35 

2014 659.21 719.17 9.68 2841.03 

2015 681.03 757.26 9.81 2911.72 

2016 702.84 795.36 9.93 2982.40 

2017 724.65 833.45 10.06 3053.08 

2018 746.46 871.54 10.18 3123.77 

2019 768.28 909.64 10.31 3194.45 

2020 790.09 947.73 10.43 3265.13 

2021 811.90 985.83 10.56 3335.82 

2022 833.71 1023.92 10.68 3406.50 

2023 855.52 1062.01 10.81 3477.18 

2024 877.34 1100.11 10.93 3547.87 

2025 899.15 1138.20 11.06 3618.55 

 
Table 5. Predicted values of oil, natural gas, coal, and primary energy 

consumptions between 2010 and 2035 based on Scenario II designed by [5] 
 

Year 

Oil 

consumption 

(Mboe) 

NG 

consumption 

(Mboe) 

Coal 

consumption 

(Mboe) 

PE 

consumption 

(Mboe) 

2010 550.79 561.29 9.46 2504.54 

2011 565.47 605.03 9.63 2560.63 

2012 584.78 649.35 9.72 2615.49 

2013 598.49 697.45 9.90 2671.84 

2014 612.21 747.85 10.08 2728.19 

2015 625.92 800.72 10.27 2784.53 

2016 639.63 856.27 10.45 2840.88 

2017 653.35 914.70 10.64 2897.23 

2018 667.06 976.22 10.82 2953.58 

2019 680.78 1041.06 11.00 3009.92 

2020 694.49 1109.44 11.19 3066.27 

2021 708.21 1181.63 11.37 3122.62 

2022 721.92 1257.87 11.56 3178.96 

2023 735.64 1338.42 11.74 3235.31 

2024 749.35 1423.57 11.93 3291.66 

2025 763.06 1513.59 12.11 3348.01 

 
 

Figure 1. Comparison between different projections for NOX emission 
based on Scenario I 

 

 
 

Figure 2. Comparison between different projections for NOX emission 

based on Scenario II 
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