

International Journal on

“Technical and Physical Problems of Engineering”

(IJTPE)

Published by International Organization of IOTPE

ISSN 2077-3528

IJTPE Journal

www.iotpe.com

ijtpe@iotpe.com

December 2013 Issue 17 Volume 5 Number 4 Pages 88-93

88

GENETIC ALGORITHM APPLICATION IN ECONOMIC LOAD

DISTRIBUTION

N.M. Tabatabaei 1,2 A. Jafari 1 N.S. Boushehri 1,2 K. Dursun 3

1. Electrical Engineering Department, Seraj Higher Education Institute, Tabriz, Iran

n.m.tabatabaei@gmail.com, ali.jafari.860@gmail.com, nargesboush@yahoo.com

2. Taba Elm International Institute, Tabriz, Iran

3. Electrical Engineering Department, Ostfold University College, Fredrikstad, Norway, kamil.dursun@hiof.no

Abstract- In this paper we try to present Genetic

Algorithm and how to use it for solving Economic

Dispatch problem. In the first section, we present on what

basis does it work, and why Genetic Algorithm (GA) is

useful and what problems can be solved by it. In the

second section, we present theory of GA like

representation of design variables, representation of

objective function and constraints, genetic operators, and

in third section we review the GA steps for solving

problem, and in fourth section we present classic

Economic Dispatch by Genetic Algorithm and how to use

it for solving ED problems, like present of constraints and

variables. In fifth section we use MATLAB programing

tool for write a simple program for solving a simple

problem of ED that written program presented in paper

attachment. In sixth section we compare results of GA

and Lagrangian method for compare GA performance. To

end we have conclusion of this paper.

Keywords: Genetic Algorithm (GA), Economic

Dispatch, Optimization Algorithms.

I. INTRODUCTION

In some of optimization problems, number of

variables in the problem is continues and number of them

is discontinues. Also search space in this problems

sometimes is non-convex or discontinuous. These two

factors along with other factors proposed in combined

optimization and continuous optimization causes use of

standard methods of optimization go inefficient, and in

terms of computational are very expensive. In other

words, solving above problems with classical

optimization methods, causes local optimal solution in

the neighborhood of the starting point. A possible way to

solve such complex optimization problems using a

method called a Genetic Algorithm that it has the ability

to find a global optimal solution with a high probability

of success.

In facts the Genetic Algorithm is a search technique

for finding approximate solutions to optimization

problems using concepts such as biology inheritance and

mutations. This algorithm that it based on Darwin's

theory of evolution is built, first, the variables are coded

with the appropriate binary strings then using computer

simulations laws struggle to survive constantly run and

more appropriate disciplines are in fact an optimal

solution can be obtained. The Genetic Algorithm is a

method based on probabilities, to ensure that given

results are best values run the algorithm several times and

compare results. However, the probability of finding the

global optimum response in the event of the use of the

appropriate values for the parameters of the algorithm is

huge [1-4].

II. GENETIC ALGORITHM DEFINITION

A. Representation of Design Variables

In GAs, the design variables are represented as strings

of binary numbers, 0 and 1. For example, if a design

variable xi is denoted by a string of length four (or a four-

bit string) as (0 1 0 1), its integer (decimal equivalent)

value will be 1+0+4+0=5. If each design variable xi, i=1,

2… n is coded in a string of length q, a design vector is

represented using a string of total length nq. For example,

if a string of length 5 is used to represent each variable, a

total string of length 20 describes a design vector with

n=4. The following string of 20 binary digits denote the

vector (x1=18, x2=3, x3=1, x4=4):

Figure 1. Example of string length

In general, if a binary number is given by

bqbq-1, …, b2b1b0, where bk=0 or 1, k=1, 2…, q then its

equivalent decimal number y (integer) is given by:

0

2
q

k
k

k

y b


 (1)

This indicates that a continuous design variable x can

only be represented by a set of discrete values if binary

representation is used. If a variable x (whose bounds are

given by xl and xu) is represented by a string of q binary

numbers, as shown in Equation (1), its decimal value can

be computed as:

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 17, Vol. 5, No. 4, Dec. 2013

 89

0

2
2 1

qu l
l k

kq
k

x x
x x b




 


 (2)

Thus if a continuous variable is to be represented with

high accuracy, we need to use a large value of q in its

binary representation. In fact, the number of binary digits

needed (q) to represent a continuous variable in steps

(accuracy) of ∆x can be computed from the relation:

2 1
u l

q x x

x


 


 (3)

For example, if a continuous variable x with bounds 1 and

5 is to be represented with an accuracy of 0.01, we need

to use a binary representation with q digits where

5 1
2 1 401

0 01

q

.


   or 9q  . Equation (2) shows why

GAs are naturally suited for solving discrete optimization

problems [3, 5].

B. Representation of Objective Function and

Constraints

Because Genetic Algorithms are based on the survival

of the fittest principle of nature, they try to maximize a

function called the fitness function. Thus GAs are

naturally suitable for solving unconstrained maximization

problems. The fitness function, F(X), can be taken to be

same as the objective function f(X) of an unconstrained

maximization problem so that F(X) = f(X). A

minimization problem can be transformed into a

maximization problem before applying the GAs. Usually

the fitness function is chosen to be nonnegative. The

commonly used transformation to convert an

unconstrained minimization problem to a fitness function

is given by:

1
()

1 ()
F X

f X



 (4)

It can be seen that Equation (4) does not alter the

location of the minimum of f(X) but converts the

minimization problem into an equivalent maximization

problem. A general constrained minimization problem

can be stated as: Minimize f(X) subject to gi(X) ≤ 0;

i=1, 2, …, m and hj(X) ≤ 0; j=1, 2, …, p. This problem

can be converted into an equivalent unconstrained

minimization problem by using the concept of penalty

function as:

 
22

1 1

min () () () ()
pm

i i j j
i j

X f X r g X R h X
 

    (5)

where ri and Rj are the penalty parameters associated with

the constraints gi(X) and hj(X), whose values are usually

kept constant throughout the solution process. In

Equation (5), the function ()ig X , called the bracket

function, is defined as:

() if () 0
()

0 if () 0

i i
i

i

g X g X
g X

g X


 


 (6)

In most cases, the penalty parameters associated with

all the inequality and equality constraints are assumed to

be the same constants as: ri=r; i=1, 2, …, m and Rj=R;

j=1, 2,…, p, where r and R are constants. The fitness

function, F(X), to be maximized in the GAs can be

obtained, similar to Equation (4), as:

1
()

1 ()
F X

X



 (7)

The Equations (5) and (6) show that the penalty will

be proportional to the square of the amount of violation

of the inequality and equality constraints at the design

vector X, while there will be no penalty added to f(X) if

all the constraints are satisfied at design vector X [3-5].

C. Genetic Operators

The solution of an optimization problem by GAs

starts with a population of random strings denoting

several (population of) design vectors. The population

size in GAs (n) is usually fixed. Each string (or design

vector) is evaluated to find its fitness value. The

population (of designs) is operated by three operators’

reproduction, crossover, and mutation to produce a new

population of points (designs). The new population is

further evaluated to find the fitness values and tested for

the convergence of the process. One cycle of

reproduction, crossover, and mutation and the evaluation

of the fitness values is known as a generation in GAs. If

the convergence criterion is not satisfied, the population

is iteratively operated by the three operators and the

resulting new population is evaluated for the fitness

values. The procedure is continued through several

generations until the convergence criterion is satisfied

and the process is terminated. The details of the three

operations of GAs are given below [3-5].

D. Reproduction

Reproduction is the first operation applied to the

population to select good strings (designs) of the

population to form a mating pool. The reproduction

operator is also called the selection operator because it

selects good strings of the population. The reproduction

operator is used to pick above average strings from the

current population and insert their multiple copies in the

mating pool based on a probabilistic procedure. In a

commonly used reproduction operator, a string is selected

from the mating pool with a probability proportional to

its fitness. Thus if Fi denotes the fitness of the string in

the population of size n, the probability for selecting the

ith string for the mating pool (pi) is given by:

1

, 1i
i n

j
j

F
p i ,...,n

F


 


 (8)

Note that Equation (8) implies that the sum of the

probabilities of the strings of the population being

selected for the mating pool is one. The implementation

of the selection process given by Equation (8) can be

understood by imagining a roulette wheel with its

circumference divided into segments, one for each string

of the population, with the segment lengths proportional

to the fitness of the strings as shown in Figure 1. By

spinning the roulette wheel n times (n being the

population size) and selecting, each time, the string

chosen by the roulette-wheel pointer, we obtain a mating

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 17, Vol. 5, No. 4, Dec. 2013

 90

pool of size n. Since the segments of the circumference of

the wheel are marked according to the fitness of the

various strings of the original population, the roulette-

wheel process is expected to select Fi/F copies of the ith

string for the mating pool, where F denotes the average

fitness of the population:

1

1 n

j
j

F F
n 

  (9)

Figure 2. Roulette-Wheel selection scheme

In Figure 1, the population size is assumed to be 6

with fitness values of the strings 1, 2, 3, 4, 5, and 6 given

by 12, 4, 16, 8, 36, and 24, respectively. Since the fifth

string (individual) has the highest value, it is expected to

be selected most of the time (36% of the time,

probabilistically) when the roulette wheel is spun n times

(n=6 in Figure 1). The selection scheme, based on the

spinning of the roulette wheel, can be implemented

numerically during computations as follows. The

probabilities of selecting different strings based on their

fitness values are calculated using Equation (8). These

probabilities are used to determine the cumulative

probability of string i being copied to the mating pool, pi

by adding the individual probabilities of strings 1 through

i as:

1

i

i j
j

P p


 (10)

Thus the roulette-wheel selection process can be

implemented by associating the cumulative probability

range Pi-1-Pi to the ith string. To generate the mating pool

of size n during numerical computations, n random

numbers, each in the range of zero to one, are generated

(or chosen). By treating each random number as the

cumulative probability of the string to be copied to the

mating pool, n strings corresponding to the n random

numbers are selected as members of the mating pool. By

this process, the string with a higher (lower) fitness value

will be selected more (less) frequently to the mating pool

because it has a larger (smaller) range of cumulative

probability.

Therefore, strings with high fitness values in the

population, probabilistically, get more copies in the

mating pool. It is to be noted that no new strings are

formed in the reproduction stage; only the existing strings

in the population get copied to the mating pool. The

reproduction stage ensures that highly fit individuals

(strings) live and reproduce, and less fit individuals

(strings) die. Thus the GAs simulate the principle of

“survival-of-the-fittest” of nature [1, 3-5].

E. Crossover

After reproduction, the crossover operator is

implemented. The purpose of crossover is to create new

strings by exchanging information among strings of the

mating pool. Many crossover operators have been used in

the literature of GAs. In most crossover operators, two

individual strings (designs) are picked (or selected) at

random from the mating pool generated by the

reproduction operator and some portions of the strings are

exchanged between the strings. In the commonly used

process, known as a single-point crossover operator, a

crossover site is selected at random along the string

length, and the binary digits (alleles) lying on the right

side of the crossover site are swapped (exchanged)

between the two strings. The two strings selected for

participation in the crossover operators are known as

parent strings and the strings generated by the crossover

operator are known as child strings. For example, if two

design vectors (parents), each with a string length of 10,

are given by:

1

2

(Parent1) {010 |1011011}

(Parent 2) {100 | 0111100}

X

X





The result of crossover, when the crossover site is 3, is

given by:

3

4

(1) {010 | 0111100}

(

Offspring

Offspring2) {100 |1011011}

X

X





Since the crossover operator combines substrings

from parent strings (which have good fitness values), the

resulting child strings created are expected to have better

fitness values provided an appropriate (suitable)

crossover site is selected. However, the suitable or

appropriate crossover site is not known beforehand.

Hence the crossover site is usually chosen randomly. The

child strings generated using a random crossover site may

or may not be as good as or better than their parent

strings in terms of their fitness values. If they are good or

better than their parents, they will contribute to a faster

improvement of the average fitness value of the new

population. On the other hand, if the child strings created

are worse than their parent strings, it should not be of

much concern to the success of the GAs because the bad

child strings will not survive very long as they are less

likely to be selected in the next reproduction stage

(because of the survival-of-the-fittest strategy used).

As indicated above, the effect of crossover may be

useful or detrimental. Hence it is desirable not to use all

the strings of the mating pool in crossover but to preserve

some of the good strings of the mating pool as part of the

population in the next generation. In practice, a crossover

probability, pc is used in selecting the parents for

crossover. Thus only 100pc percent of the strings in the

mating pool will be used in the crossover operator while

100(1–pc) percent of the strings will be retained as they

are in the new generation (of population) [1, 3-5].

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 17, Vol. 5, No. 4, Dec. 2013

 91

F. Mutation
The crossover is the main operator by which new

strings with better fitness values are created for the new
generations. The mutation operator is applied to the new
strings with a specific small mutation probability, pm. The
mutation operator changes the binary digit (allele’s value)
1 to 0 and vice versa. Several methods can be used for
implementing the mutation operator. In the single-point
mutation, a mutation site is selected at random along the
string length and the binary digit at that site is then
changed from 1 to 0 or 0 to 1 with a probability of pm. In
the bit-wise mutation, each bit (binary digit) in the string
is considered one at a time in sequence, and the digit is
changed from 1 to 0 or 0 to 1 with a probability pm.
numerically, the process can be implemented as follows.
A random number between 0 and 1 is generated/chosen.
If the random number is smaller than pm, then the binary
digit is changed. Otherwise, the binary digit is not
changed. The purpose of mutation is (1)- to generate a
string (design point) in the neighborhood of the current
string, thereby accomplishing a local search around the
current solution, (2)- to safeguard against a premature
loss of important genetic material at a particular position,
and (3)- to maintain diversity in the population [1, 3-5].
As an example, consider the following population of size
n = 5 with a string length 10:
1 0 0 0 1 0 0 0 1 1

1 0 1 1 1 1 0 1 0 0

1 1 0 0 0 0 1 1 0 1

1 0 1 1 0 1 0 0 1 0

1 1 1 0 0 0 1 0 0 1

Here all the five strings have a 1 in the position of the
first bit. The true optimum solution of the problem
requires a 0 as the first bit. The required 0 cannot be
created by either the reproduction or the crossover
operators. However, when the mutation operator is used,
the binary number will be changed from 1 to 0 in the
location of the first bit with a probability of npm.

Note that the three operator’s reproduction, crossover,
and mutation are simple to implement. The reproduction
operator selects good strings for the mating pool, the
crossover operator recombines the substrings of good
strings of the mating pool to create strings (next
generation of population), and the mutation operator
alters the string locally. The use of these three operators
successively yields new generations with improved
values of average fitness of the population. Although, the
improvement of the fitness of the strings in successive
generations cannot be proved mathematically, the process
has been found to converge to the optimum fitness value
of the objective function. Note that if any bad strings are
created at any stage in the process, they will be
eliminated by the reproduction operator in the next
generation. The GAs have been successfully used to solve
a variety of optimization problems in [1, 3-5].

III. GENETIC ALGORITHM PROCEDURE

The computational procedure involved in maximizing

the fitness function F(x1, x2,…, xn) in the Genetic

Algorithm can be described by the following steps:

a. Choose a suitable string length “l=nq” to represent the

n design variables of the design vector X. Assume

suitable values for the following parameters: population

size m, crossover probability pc, mutation probability pm,

permissible value of standard deviation of fitness values

of the population (Sf)max to use as a convergence criterion,

and maximum number of generations (imax) to be used an

a second convergence criterion.

b. Generate a random population of size m, each

consisting of a string of length l=nq. Evaluate the fitness

values Fi, i=1, 2,…, m of the m strings.

c. Carry out the reproduction process.

d. Carry out the crossover operation using the crossover

probability pc.

e. Carry out the mutation operation using the mutation

probability pm to find the new generation of m strings.

f. Evaluate the fitness values Fi, i=1, 2,…, m of the m

strings of the new population. Find the standard deviation

of the m fitness values.

g. Test for the convergence of the algorithm or process.

If Sf ≤ (Sf)max, the convergence criterion is satisfied and

hence process may be stopped. Otherwise, go to step h.

h. Test for the generation number. If i ≥ imax, the

computations have been performed for the maximum

permissible number of generations and hence the process

may be stopped. Otherwise, set the generation number as

i=i+1 and go to step (c) [1, 3-5]. A look at the steps

mentioned is in Figure 3.

Figure 3. Flowchart of binary GA [3]

IV. CLASSIC ECONOMIC DISPATCH BY

GENETIC ALGORITHM

Another type of method that is used to solve the

classic Economic Dispatch problem is Genetic

Algorithm. The theoretical foundation for GA was first

described by Holland and was extended by Goldberg. GA

provides a solution to a problem by working with a

population of individuals each representing a possible

solution. Each possible solution is termed a chromosome.

New points of the search space are generated through GA

operations, known as reproduction, crossover, and

mutation. These operations consistently produce fitter

offspring through successive generations, which rapidly

lead the search toward global optimal [7-9, 12, 13, 14].

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 17, Vol. 5, No. 4, Dec. 2013

 92

A. GA Based ED Solution

The classic economic dispatch problem can be stated:

1

minimize ()
N

i Gi
i

F F P


 (11)

1

N

Gi D loss
i

P P P


  (12)

1

0
N

Gi D loss
i

P P P


    (13)

Adding penalty factor h1 to the violation of power

outputs, we can combine Equations (13) and (12):
2

1
1 1

() h
N N

A i Gi Gi D loss
i i

F F P P P P
 

 
    

 
  (14)

The value of the penalty factor should be large so that

there is no violation for unit output at the final solution.

Since GA is designed for the solution of maximization

problems, the GA fitness function is defined as the

inverse of Equation (14).

1/fitness AF F (15)

In the economic dispatch problem, the problem

variables correspond to the power generations of the

units. Each string represents a possible solution and is

made of substrings, each corresponding to a generating

unit. The length of each substring is decided based on the

maximum/minimum limits on the power generation of

the corresponding unit and the solution accuracy desired.

The string length, which depends on the length of each

substring, is chosen based on a trade-off between solution

accuracy and solution time. Longer strings may provide

better accuracy but result in more solution time. Thus the

step size of the unit can be computed as follows: [2, 3]

max min

2 1

Gi Gi
i n

P P






 (16)

V. SIMULATION

To show a simple example we assume a system that

has two power generators which fuel cost functions by

$/h is as follow:
2

1 1 1

2
2 2 2

500 5 3 0 004

400 5 5 0 006

F . P . P

F . P . P

  

  
 (17)

The powers are determined by MW and total load is

600MW which the losses are neglected. Generators

constraints (by MW) are as follow:

1 2200 450 200 450P , P    (18)

In this paper we use Matlab software programing tool for

write a program for solve this simple problem. The

results are as follow:

1 2369 7192 MW , 230 2808 MWP . P .  (19)

and the optimum fuel cost is equal to 4991$/h [2, 6-9].

VI. COMPARISON RESULTS OF GENETIC

ALGORITHM AND LAGRANGIAN METHODS

For comparison we need lagrangian method results,

the Lagrangian method results same as follow:

1 2370 MW , 230 MWP P  (20)

By comparison this results with results of Genetic
Algorithm we understand the accuracy of GA is good if
we choose parameters appropriate. Also speed of GA for
searching in the big area and more number of generators
is better than other search methods. Another advantage is
that GA don’t need to differential of cost function, and
use cost function to find better result. This property is
very important when my cost function curve isn’t
continues or cost function is piece lines.

Table 1. Results of three algorithms for solving assumed ED [14]

Parameters ACO GA Lagrangian Pload (MW)

P1 (MW) 374.6425 369.7192 370 600

P2 (MW) 225.3525 230.2808 230 600

Cost ($/h) 4991.2 4991 4991 600

Figure 4. Minimum of cost function

Figure 5. Value of Power output of unit 1

Figure 6. Value of power output of unit 2

VII. CONCLUSIONS
In this paper we have seen that genetic algorithms can

be a powerful tool for solving problems and for
simulating natural systems in a wide variety of scientific
fields. An optimization problem because of increase
security and decrease costs in power systems always was

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 17, Vol. 5, No. 4, Dec. 2013

 93

important. So methods of optimization in power systems
should have high accuracy and high speed. Some of this
methods have some constraint that can affect
performance of networks, and we try to troubleshooting
this problems. Genetic Algorithm is method that try to
troubleshooting this problem, GA has high speed, global
search, high accuracy and compatible with restrictions.
This advantages make GA as powerful optimization
method. So we can learn GA and use it in any problem
that need to optimization.

REFERENCES

[1] S.R. Singiresu, “Engineering Optimization - Theory and

Practice”, 4th Edition, John Wiley & Sons, 2009.

[2] J. Zhu, “Optimization of Power System Operation”,

IEEE Press Series on Power Engineering, John Wiley &

Sons Inc., 2008.

[3] R.L. Haupt, S.E. Haupt, “Practical Genetic Algorithms”,

2nd Edition, John Wiley & Sons Inc., 2004

[4] F. Merrikh Bayat, “Optimization Algorithms Inspired by

Nature”, Zanjan University, Zanjan, Iran, 2012.

[5] M. Melanie, “An Introduction to Genetic Algorithms”,

MIT Press, 1996.

[6] N.M. Tabatabaei, F. Rajabi “Optimization of Power

Generation Distribution with Genetic Algorithm”, 9th Baku

International Congress on Energy, Ecology and Economy,

pp. 70-75, International Ecoenergy Academy, Baku,

Azerbaijan, June 7-9, 2007.

[7] “Economic Dispatch, Concepts, Practices and Issues

FERC”, Staff Palm Springs, California, Nov. 13, 2005.

[8] H. Saadat, “Power System Analysis”, McGraw-Hill, 1999.

[9] H.H. Happ, “Optimal Power Dispatch”, IEEE Trans. on

Power Apparatus and Systems, PAS-93, pp. 820-830, 1974.

[10] A.J. Wood, B.F. Wollenberg, “Power Generation,

Operation and Control”, Wiley Interscience Publication,

John Wiley & Sons Inc., 1996.

[11] A.G. Bakirtzis, P.N. Biskas, C.E. Zoumas, V. Petridis,

“Optimal Power Flow by Enhanced Genetic Algorithm”,

IEEE Transactions on Power Systems, Vol. 17, No. 2,

pp.229-236, May 2002,.

[12] G.B. Sheble, K. Brittig, “Refined Genetic Algorithm-

Economic Dispatch Example”, IEEE/PES Winter Meeting,

Paper 94 WM 199-0 PWRS, 1994.

[13] K.P. Wong, Y.W. Wong, “Genetic and

Genetic/Simulated-Annealing Approaches to Economic

Dispatch”, Inst. Elect. Eng., Gener. Transm. Distrib., Vol.

141, No. 5, pp. 507-513, Sep. 1994.

[14] N.M. Tabatabaei, A. Jafari, N.S. Boushehri, K. Dursun,

“Ant Colony Algorithm Application in Economic Load

Distribution”, International Journal on Technical and

Physical Problems of Engineering (IJTPE), Issue 16, Vol. 5,

No. 6, pp. 155-160, September 2013.

BIOGRAPHIES

Naser Mahdavi Tabatabaei was

born in Tehran, Iran, 1967. He

received the B.Sc. and the M.Sc.

degrees from University of Tabriz

(Tabriz, Iran) and the Ph.D. degree

from Iran University of Science and

Technology (Tehran, Iran), all in

Power Electrical Engineering, in

1989, 1992, and 1997, respectively. Currently, he is a

Professor in International Organization of IOTPE. He is also

an academic member of Power Electrical Engineering at

Seraj Higher Education Institute (Tabriz, Iran) and teaches

power system analysis, power system operation, and reactive

power control. He is the General Secretary of International

Conference of ICTPE, Editor-in-Chief of International

Journal of IJTPE and Chairman of International Enterprise

of IETPE all supported by IOTPE. He has authored and co-

authored of six books and book chapters in Electrical

Engineering area in international publishers and more than

130 papers in international journals and conference

proceedings. His research interests are in the area of power

quality, energy management systems, ICT in power

engineering and virtual e-learning educational systems. He is

a member of the Iranian Association of Electrical and

Electronic Engineers (IAEEE).

Ali Jafari was born in Zanjan, Iran in

1988. He received the B.Sc. degree in

Electrical Engineering from Abhar

Branch, Islamic Azad University,

Abhar, Iran in 2011. He is currently the

M.Sc. student in Seraj Higher Education

Institute, Tabriz, Iran. He is the

Member of Scientific and Executive

Committees of International Conference of ICTPE and also

the Scientific and Executive Secretary of International

Journal of IJTPE supported by International Organization of

IOTPE (www.iotpe.com). His research fields are power

system analysis and operation, and reactive power control.

Narges Sadat Boushehri was born

in Iran. She received her B.Sc. degree

in Control Engineering from Sharif

University of Technology (Tehran,

Iran), and Electronic Engineering

from Central Tehran Branch, Islamic

Azad University, (Tehran, Iran), in

1991 and 1996, respectively. She

received the M.Sc. degree in Electronic Engineering from

International Ecocenergy Academy (Baku, Azerbaijan), in

2009. She is the Member of Scientific and Executive

Committees of International Conference of ICTPE and also

the Scientific and Executive Secretary of International Journal

of IJTPE supported by International Organization of IOTPE

(www.iotpe.com). Her research interests are in the area of

power system control and artificial intelligent algorithms.

Kamil Dursun was born in Ankara,

Turkey, 1954. He received the M.Sc.

and the Ph.D. degrees from The

Norwegian Technical University, all

in Power Electrical Engineering, in

1978 and 1984, respectively. He

worked with ABB in several

countries. Currently, he is an

Associate Professor of Power Engineering at Ostfold

University College (Fredrikstad, Norway). He is the

secretary of International Conference of ICTPE. His

research interests are in the area of efficient power

distribution, energy management systems and virtual e-

learning educational systems.

