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Abstract- In this paper we try to present Genetic 

Algorithm and how to use it for solving Economic 

Dispatch problem. In the first section, we present on what 

basis does it work, and why Genetic Algorithm (GA) is 

useful and what problems can be solved by it. In the 

second section, we present theory of GA like 

representation of design variables, representation of 

objective function and constraints, genetic operators, and 

in third section we review the GA steps for solving 

problem, and in fourth section we present classic 

Economic Dispatch by Genetic Algorithm and how to use 

it for solving ED problems, like present of constraints and 

variables. In fifth section we use MATLAB programing 

tool for write a simple program for solving a simple 

problem of ED that written program presented in paper 

attachment. In sixth section we compare results of GA 

and Lagrangian method for compare GA performance. To 

end we have conclusion of this paper. 
 

Keywords: Genetic Algorithm (GA), Economic 

Dispatch, Optimization Algorithms. 
 

I. INTRODUCTION                                                                         

In some of optimization problems, number of 

variables in the problem is continues and number of them 

is discontinues. Also search space in this problems 

sometimes is non-convex or discontinuous. These two 

factors along with other factors proposed in combined 

optimization and continuous optimization causes use of 

standard methods of optimization go inefficient, and in 

terms of computational are very expensive. In other 

words, solving above problems with classical 

optimization methods, causes local optimal solution in 

the neighborhood of the starting point. A possible way to 

solve such complex optimization problems using a 

method called a Genetic Algorithm that it has the ability 

to find a global optimal solution with a high probability 

of success.  

In facts the Genetic Algorithm is a search technique 

for finding approximate solutions to optimization 

problems using concepts such as biology inheritance and 

mutations. This algorithm that it based on Darwin's 

theory of evolution is built, first, the variables are coded 

with the appropriate binary strings then using computer 

simulations laws struggle to survive constantly run and 

more appropriate disciplines are in fact an optimal 

solution can be obtained. The Genetic Algorithm is a 

method based on probabilities, to ensure that given 

results are best values run the algorithm several times and 

compare results. However, the probability of finding the 

global optimum response in the event of the use of the 

appropriate values for the parameters of the algorithm is 

huge [1-4]. 
 

II. GENETIC ALGORITHM DEFINITION 
 

A. Representation of Design Variables 

In GAs, the design variables are represented as strings 

of binary numbers, 0 and 1. For example, if a design 

variable xi is denoted by a string of length four (or a four-

bit string) as (0 1 0 1), its integer (decimal equivalent) 

value will be 1+0+4+0=5. If each design variable xi, i=1, 

2… n is coded in a string of length q, a design vector is 

represented using a string of total length nq. For example, 

if a string of length 5 is used to represent each variable, a 

total string of length 20 describes a design vector with 

n=4. The following string of 20 binary digits denote the 

vector (x1=18, x2=3, x3=1, x4=4): 
 

 
 

Figure 1. Example of string length 

 

In general, if a binary number is given by              

bqbq-1, …, b2b1b0, where bk=0 or 1, k=1, 2…, q then its 

equivalent decimal number y (integer) is given by: 

0

2
q

k
k

k

y b


  (1) 

This indicates that a continuous design variable x can 

only be represented by a set of discrete values if binary 

representation is used. If a variable x (whose bounds are 

given by xl and xu) is represented by a string of q binary 

numbers, as shown in Equation (1), its decimal value can 

be computed as: 
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0

2
2 1

qu l
l k

kq
k

x x
x x b




 


  (2) 

Thus if a continuous variable is to be represented with 

high accuracy, we need to use a large value of q in its 

binary representation. In fact, the number of binary digits 

needed (q) to represent a continuous variable in steps 

(accuracy) of ∆x can be computed from the relation: 

2 1
u l

q x x

x


 


 (3) 

For example, if a continuous variable x with bounds 1 and 

5 is to be represented with an accuracy of 0.01, we need 

to use a binary representation with q digits where 

5 1
2 1 401

0 01

q

.


    or 9q  . Equation (2) shows why 

GAs are naturally suited for solving discrete optimization 

problems [3, 5]. 
 

B. Representation of Objective Function and 

Constraints 

Because Genetic Algorithms are based on the survival 

of the fittest principle of nature, they try to maximize a 

function called the fitness function. Thus GAs are 

naturally suitable for solving unconstrained maximization 

problems. The fitness function, F(X), can be taken to be 

same as the objective function f(X) of an unconstrained 

maximization problem so that F(X) = f(X). A 

minimization problem can be transformed into a 

maximization problem before applying the GAs. Usually 

the fitness function is chosen to be nonnegative. The 

commonly used transformation to convert an 

unconstrained minimization problem to a fitness function 

is given by: 

1
( )

1 ( )
F X

f X



 (4) 

It can be seen that Equation (4) does not alter the 

location of the minimum of f(X) but converts the 

minimization problem into an equivalent maximization 

problem. A general constrained minimization problem 

can  be  stated  as:  Minimize  f(X)  subject  to  gi(X) ≤ 0; 

i=1, 2, …, m and hj(X) ≤ 0; j=1, 2, …, p. This problem 

can be converted into an equivalent unconstrained 

minimization problem by using the concept of penalty 

function as:  

 
22

1 1

min ( ) ( ) ( ) ( )
pm

i i j j
i j

X f X r g X R h X
 

     (5) 

where ri and Rj are the penalty parameters associated with 

the constraints gi(X) and hj(X), whose values are usually 

kept constant throughout the solution process. In 

Equation (5), the function ( )ig X , called the bracket 

function, is defined as: 

( ) if ( ) 0
( )

0        if ( ) 0

i i
i

i

g X g X
g X

g X


 


 (6) 

In most cases, the penalty parameters associated with 

all the inequality and equality constraints are assumed to 

be the same constants as: ri=r; i=1, 2, …, m and Rj=R; 

j=1, 2,…, p, where r and R are constants. The fitness 

function, F(X), to be maximized in the GAs can be 

obtained, similar to Equation (4), as: 

1
( )

1 ( )
F X

X



 (7) 

The Equations (5) and (6) show that the penalty will 

be proportional to the square of the amount of violation 

of the inequality and equality constraints at the design 

vector X, while there will be no penalty added to f(X) if 

all the constraints are satisfied at design vector X [3-5]. 

 

C. Genetic Operators 

The solution of an optimization problem by GAs 

starts with a population of random strings denoting 

several (population of) design vectors. The population 

size in GAs (n) is usually fixed. Each string (or design 

vector) is evaluated to find its fitness value. The 

population (of designs) is operated by three operators’ 

reproduction, crossover, and mutation to produce a new 

population of points (designs). The new population is 

further evaluated to find the fitness values and tested for 

the convergence of the process. One cycle of 

reproduction, crossover, and mutation and the evaluation 

of the fitness values is known as a generation in GAs. If 

the convergence criterion is not satisfied, the population 

is iteratively operated by the three operators and the 

resulting new population is evaluated for the fitness 

values. The procedure is continued through several 

generations until the convergence criterion is satisfied 

and the process is terminated. The details of the three 

operations of GAs are given below [3-5]. 

 

D. Reproduction 

Reproduction is the first operation applied to the 

population to select good strings (designs) of the 

population to form a mating pool. The reproduction 

operator is also called the selection operator because it 

selects good strings of the population. The reproduction 

operator is used to pick above average strings from the 

current population and insert their multiple copies in the 

mating pool based on a probabilistic procedure. In a 

commonly used reproduction operator, a string is selected 

from the mating pool with a probability proportional to 

its fitness. Thus if Fi denotes the fitness of the string in 

the population of size n, the probability for selecting the 

ith string for the mating pool (pi) is given by: 

1

,     1i
i n

j
j

F
p i ,...,n

F


 


 (8) 

Note that Equation (8) implies that the sum of the 

probabilities of the strings of the population being 

selected for the mating pool is one. The implementation 

of the selection process given by Equation (8) can be 

understood by imagining a roulette wheel with its 

circumference divided into segments, one for each string 

of the population, with the segment lengths proportional 

to the fitness of the strings as shown in Figure 1. By 

spinning the roulette wheel n times (n being the 

population size) and selecting, each time, the string 

chosen by the roulette-wheel pointer, we obtain a mating 
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pool of size n. Since the segments of the circumference of 

the wheel are marked according to the fitness of the 

various strings of the original population, the roulette-

wheel process is expected to select Fi/F copies of the ith 

string for the mating pool, where F  denotes the average 

fitness of the population: 

1

1 n

j
j

F F
n 

   (9) 

 

 
 

Figure 2. Roulette-Wheel selection scheme 

 

In Figure 1, the population size is assumed to be 6 

with fitness values of the strings 1, 2, 3, 4, 5, and 6 given 

by 12, 4, 16, 8, 36, and 24, respectively. Since the fifth 

string (individual) has the highest value, it is expected to 

be selected most of the time (36% of the time, 

probabilistically) when the roulette wheel is spun n times 

(n=6 in Figure 1). The selection scheme, based on the 

spinning of the roulette wheel, can be implemented 

numerically during computations as follows. The 

probabilities of selecting different strings based on their 

fitness values are calculated using Equation (8). These 

probabilities are used to determine the cumulative 

probability of string i being copied to the mating pool, pi 

by adding the individual probabilities of strings 1 through 

i as: 

1

i

i j
j

P p


  (10) 

Thus the roulette-wheel selection process can be 

implemented by associating the cumulative probability 

range Pi-1-Pi to the ith string. To generate the mating pool 

of size n during numerical computations, n random 

numbers, each in the range of zero to one, are generated 

(or chosen). By treating each random number as the 

cumulative probability of the string to be copied to the 

mating pool, n strings corresponding to the n random 

numbers are selected as members of the mating pool. By 

this process, the string with a higher (lower) fitness value 

will be selected more (less) frequently to the mating pool 

because it has a larger (smaller) range of cumulative 

probability.  

Therefore, strings with high fitness values in the 

population, probabilistically, get more copies in the 

mating pool. It is to be noted that no new strings are 

formed in the reproduction stage; only the existing strings 

in the population get copied to the mating pool. The 

reproduction stage ensures that highly fit individuals 

(strings) live and reproduce, and less fit individuals 

(strings) die. Thus the GAs simulate the principle of 

“survival-of-the-fittest” of nature [1, 3-5]. 

 

E. Crossover 

After reproduction, the crossover operator is 

implemented. The purpose of crossover is to create new 

strings by exchanging information among strings of the 

mating pool. Many crossover operators have been used in 

the literature of GAs. In most crossover operators, two 

individual strings (designs) are picked (or selected) at 

random from the mating pool generated by the 

reproduction operator and some portions of the strings are 

exchanged between the strings. In the commonly used 

process, known as a single-point crossover operator, a 

crossover site is selected at random along the string 

length, and the binary digits (alleles) lying on the right 

side of the crossover site are swapped (exchanged) 

between the two strings. The two strings selected for 

participation in the crossover operators are known as 

parent strings and the strings generated by the crossover 

operator are known as child strings. For example, if two 

design vectors (parents), each with a string length of 10, 

are given by: 

1

2

(Parent1)   {010 |1011011}

(Parent 2)   {100 | 0111100}

X

X




 

The result of crossover, when the crossover site is 3, is 

given by: 

3

4

( 1) {010 | 0111100}

(

Offspring

Offspring2) {100 |1011011}

X

X




 

Since the crossover operator combines substrings 

from parent strings (which have good fitness values), the 

resulting child strings created are expected to have better 

fitness values provided an appropriate (suitable) 

crossover site is selected. However, the suitable or 

appropriate crossover site is not known beforehand. 

Hence the crossover site is usually chosen randomly. The 

child strings generated using a random crossover site may 

or may not be as good as or better than their parent 

strings in terms of their fitness values. If they are good or 

better than their parents, they will contribute to a faster 

improvement of the average fitness value of the new 

population. On the other hand, if the child strings created 

are worse than their parent strings, it should not be of 

much concern to the success of the GAs because the bad 

child strings will not survive very long as they are less 

likely to be selected in the next reproduction stage 

(because of the survival-of-the-fittest strategy used). 

As indicated above, the effect of crossover may be 

useful or detrimental. Hence it is desirable not to use all 

the strings of the mating pool in crossover but to preserve 

some of the good strings of the mating pool as part of the 

population in the next generation. In practice, a crossover 

probability, pc is used in selecting the parents for 

crossover. Thus only 100pc percent of the strings in the 

mating pool will be used in the crossover operator while 

100(1–pc) percent of the strings will be retained as they 

are in the new generation (of population) [1, 3-5]. 
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F. Mutation 
The crossover is the main operator by which new 

strings with better fitness values are created for the new 
generations. The mutation operator is applied to the new 
strings with a specific small mutation probability, pm. The 
mutation operator changes the binary digit (allele’s value) 
1 to 0 and vice versa. Several methods can be used for 
implementing the mutation operator. In the single-point 
mutation, a mutation site is selected at random along the 
string length and the binary digit at that site is then 
changed from 1 to 0 or 0 to 1 with a probability of pm. In 
the bit-wise mutation, each bit (binary digit) in the string 
is considered one at a time in sequence, and the digit is 
changed from 1 to 0 or 0 to 1 with a probability pm. 
numerically, the process can be implemented as follows. 
A random number between 0 and 1 is generated/chosen. 
If the random number is smaller than pm, then the binary 
digit is changed. Otherwise, the binary digit is not 
changed. The purpose of mutation is (1)- to generate a 
string (design point) in the neighborhood of the current 
string, thereby accomplishing a local search around the 
current solution, (2)- to safeguard against a premature 
loss of important genetic material at a particular position, 
and (3)- to maintain diversity in the population [1, 3-5]. 
As an example, consider the following population of size 
n = 5 with a string length 10: 
1 0 0 0 1 0 0 0 1 1 

1 0 1 1 1 1 0 1 0 0 

1 1 0 0 0 0 1 1 0 1 

1 0 1 1 0 1 0 0 1 0 

1 1 1 0 0 0 1 0 0 1 

Here all the five strings have a 1 in the position of the 
first bit. The true optimum solution of the problem 
requires a 0 as the first bit. The required 0 cannot be 
created by either the reproduction or the crossover 
operators. However, when the mutation operator is used, 
the binary number will be changed from 1 to 0 in the 
location of the first bit with a probability of npm.  

Note that the three operator’s reproduction, crossover, 
and mutation are simple to implement. The reproduction 
operator selects good strings for the mating pool, the 
crossover operator recombines the substrings of good 
strings of the mating pool to create strings (next 
generation of population), and the mutation operator 
alters the string locally. The use of these three operators 
successively yields new generations with improved 
values of average fitness of the population. Although, the 
improvement of the fitness of the strings in successive 
generations cannot be proved mathematically, the process 
has been found to converge to the optimum fitness value 
of the objective function. Note that if any bad strings are 
created at any stage in the process, they will be 
eliminated by the reproduction operator in the next 
generation. The GAs have been successfully used to solve 
a variety of optimization problems in [1, 3-5]. 

 

III. GENETIC ALGORITHM PROCEDURE 

The computational procedure involved in maximizing 

the fitness function F(x1, x2,…, xn) in the Genetic 

Algorithm can be described by the following steps: 

a. Choose a suitable string length “l=nq” to represent the 

n design variables of the design vector X. Assume 

suitable values for the following parameters: population 

size m, crossover probability pc, mutation probability pm, 

permissible value of standard deviation of fitness values 

of the population (Sf)max to use as a convergence criterion, 

and maximum number of generations (imax) to be used an 

a second convergence criterion. 

b. Generate a random population of size m, each 

consisting of a string of length l=nq. Evaluate the fitness 

values Fi, i=1, 2,…, m of the m strings. 

c. Carry out the reproduction process. 

d. Carry out the crossover operation using the crossover 

probability pc. 

e. Carry out the mutation operation using the mutation 

probability pm to find the new generation of m strings. 

f. Evaluate the fitness values Fi, i=1, 2,…, m of the m 

strings of the new population. Find the standard deviation 

of the m fitness values. 

g. Test for the convergence of the algorithm or process. 

If Sf ≤ (Sf)max, the convergence criterion is satisfied and 

hence process may be stopped. Otherwise, go to step h. 

h. Test for the generation number. If i ≥ imax, the 

computations have been performed for the maximum 

permissible number of generations and hence the process 

may be stopped. Otherwise, set the generation number as 

i=i+1 and go to step (c) [1, 3-5]. A look at the steps 

mentioned is in Figure 3. 
 

 
 

Figure 3. Flowchart of binary GA [3]     
 

IV. CLASSIC ECONOMIC DISPATCH BY 

GENETIC ALGORITHM 

Another type of method that is used to solve the 

classic Economic Dispatch problem is Genetic 

Algorithm. The theoretical foundation for GA was first 

described by Holland and was extended by Goldberg. GA 

provides a solution to a problem by working with a 

population of individuals each representing a possible 

solution. Each possible solution is termed a chromosome. 

New points of the search space are generated through GA 

operations, known as reproduction, crossover, and 

mutation. These operations consistently produce fitter 

offspring through successive generations, which rapidly 

lead the search toward global optimal [7-9, 12, 13, 14]. 
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A. GA Based ED Solution 

The classic economic dispatch problem can be stated: 

1

minimize ( )
N

i Gi
i

F F P


  (11) 

 
1

N

Gi D loss
i

P P P


   (12) 

1

0
N

Gi D loss
i

P P P


     (13) 

Adding penalty factor h1 to the violation of power 

outputs, we can combine Equations (13) and (12): 
2

1
1 1

( ) h
N N

A i Gi Gi D loss
i i

F F P P P P
 

 
    

 
   (14) 

The value of the penalty factor should be large so that 

there is no violation for unit output at the final solution. 

Since GA is designed for the solution of maximization 

problems, the GA fitness function is defined as the 

inverse of Equation (14). 

1/fitness AF F  (15) 

In the economic dispatch problem, the problem 

variables correspond to the power generations of the 

units. Each string represents a possible solution and is 

made of substrings, each corresponding to a generating 

unit. The length of each substring is decided based on the 

maximum/minimum limits on the power generation of 

the corresponding unit and the solution accuracy desired. 

The string length, which depends on the length of each 

substring, is chosen based on a trade-off between solution 

accuracy and solution time. Longer strings may provide 

better accuracy but result in more solution time. Thus the 

step size of the unit can be computed as follows: [2, 3] 

max min

2 1

Gi Gi
i n

P P






 (16) 

 

V. SIMULATION 

To show a simple example we assume a system that 

has two power generators which fuel cost functions by 

$/h is as follow: 
2

1 1 1

2
2 2 2

500 5 3 0 004

400 5 5 0 006

F . P . P

F . P . P

  

  
 (17) 

The powers are determined by MW and total load is 

600MW which the losses are neglected. Generators 

constraints (by MW) are as follow: 

1 2200 450 200 450P    ,   P     (18) 

In this paper we use Matlab software programing tool for 

write a program for solve this simple problem. The 

results are as follow: 

1 2369 7192 MW   ,   230 2808 MWP . P .   (19) 

and the optimum fuel cost is equal to 4991$/h [2, 6-9]. 

 

VI. COMPARISON RESULTS OF GENETIC 

ALGORITHM AND LAGRANGIAN METHODS 

For comparison we need lagrangian method results, 

the Lagrangian method results same as follow: 

1 2370 MW   ,   230 MWP P   (20) 

By comparison this results with results of Genetic 
Algorithm we understand the accuracy of GA is good if 
we choose parameters appropriate. Also speed of GA for 
searching in the big area and more number of generators 
is better than other search methods. Another advantage is 
that GA don’t need to differential of cost function, and 
use cost function to find better result. This property is 
very important when my cost function curve isn’t 
continues or cost function is piece lines. 
 

Table 1. Results of three algorithms for solving assumed ED [14] 
 

Parameters ACO GA Lagrangian Pload (MW) 

P1 (MW) 374.6425 369.7192 370 600 

P2 (MW) 225.3525 230.2808 230 600 

Cost ($/h) 4991.2 4991 4991 600 

 

 
 

Figure 4. Minimum of cost function 

 

 
 

Figure 5. Value of Power output of unit 1 

 

 
 

Figure 6. Value of power output of unit 2 
 

VII. CONCLUSIONS 
In this paper we have seen that genetic algorithms can 

be a powerful tool for solving problems and for 
simulating natural systems in a wide variety of scientific 
fields. An optimization problem because of increase 
security and decrease costs in power systems always was 
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important. So methods of optimization in power systems 
should have high accuracy and high speed. Some of this 
methods have some constraint that can affect 
performance of networks, and we try to troubleshooting 
this problems. Genetic Algorithm is method that try to 
troubleshooting this problem, GA has high speed, global 
search, high accuracy and compatible with restrictions. 
This advantages make GA as powerful optimization 
method. So we can learn GA and use it in any problem 
that need to optimization. 
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