

INCORPORATING ELECTRIC VEHICLES AND SPINNING RESERVE INTO THE UNIT COMMITMENT PROBLEM

R. Ghadiri Anari¹ M. Rashidinejad^{1,2} M. Fotuhi Firuzabad^{1,3}

1. Electrical Engineering Department, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran ghadiri_reza@yahoo.com

2. Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran, mrashidi@mail.uk.ac.ir

3. Centre of Excellence in Power System Control and Management, Department of Electrical Engineering,

Sharif University of Technology, Tehran, Iran, fotuhi@sharif.edu

Abstract- Ancillary services play a vital role for maintaining security and reliability of power systems. Spinning Reserve (SR) is one of the most important ancillary services, which can provide power system stability and integrity response to contingencies, and disturbances that may occur in the power systems continuously. Although reliability is one of the most important sequences in power system, price of maintaining to it should be economical. Therefore, a trade-off between reliability and operating cost must be taken into consideration. In this paper, a Unit Commitment (UC) incorporating spinning reserve cost is presented. Furthermore, Plug in Electric Vehicles (PEVs) as mobile storage devices have additional power that can be used for different aspects such as supplying spinning reserve. Therefore, integration of PEVs, the so-called parking lots, has been added to mentioned UC problem to attain some saving. The proposed methodology is applied to IEEE 10-unit test system. The results obtained from simulation analysis show a significant techno-economic saving.

Keywords: Plugin Electric Vehicles, Unit Commitment, Smart Grid, Spinning Reserve, Ancillary Services, Reliability, Generating Scheduling, Discharging.

I. INTRODUCTION

In a Smart Grid (SG) environment, by utilizing bidirectional connection between consumers and generating resources, acquiring communication information concerning consumers' behavior as well as other available generating resources system facilitates. SGs also may improve energy efficiency, reliability, and sustainability of electric grid whilst decreasing operating costs [1]. By providing such real time information, Independent System Operators (ISOs) achieve ability to handle supply-demand equilibrium in a real time fashion and better integration of renewable energies associated with electricity storages [2]. PEVs as portable source of electricity storages have undeniable benefits through intelligent charging and discharging scheme in a smart grid environment.

One of the techno-economic achievement of PEVs is flattening load curve and minimizing load curtailment by discharging PEVs in peak time and charging at off-peak periods[3, 4]. Furthermore, they can decrease the operating costs incurred at peak hours through connecting Vehicle to Grid (V2G) [5-7]. Moreover, PEVs can reduce emission by decreasing total generation of polluting units [8, 9]. PEVs are also useful for ancillary services such as supplying spinning reserve to improve reliability as well as energy efficiency and frequency regulation because of their fast response[10-12].

Also PEVs can diminish transmission line congestion as a result of Dispersed Generation (DG) as well as decreasing real power losses and improving power quality [13-16]. Reference [17] simulates a parallel hybrid electric vehicle based on the faulty condition. A Particle Swarm Optimization with Improved Inertia Weight (PSO-IIW) is proposed in [18] to solve the UC problem between thermal generating units with wind impact an electricity market, the objective is to minimize the total cost of the system.

In this paper, the impact of parking lots penetration on spinning reserve has been investigated. A term considering spinning reserve cost has been added to objective function of conventional unit commitment problem. Mathematically, unit commitment is a non-convex, nonlinear, and mixed integer optimization problem. For sake of improvement in solving this problem, the fuel costs of generators are linearized. The problem has been modeled in GAMS platform and an IEEE 10-unit test system is considered for the numerical studies and simulation analysis. The rest of the paper is organized as follows. Section 2 proposes the problem formulation. Section 3 presents the simulation and results and finally conclusions are discussed in section 4.

II. MODELLING AND FORMULATION

A. Objective Function

The objective function of UC in this paper is to minimize total operating costs comprising fuel costs, start-up and shut down costs and spinning reserve cost.

$$\sum_{i=1}^{N} \sum_{t=1}^{h} [F_i(P_i^t) \ u_i^t + SUC_i \ (1 - u_i^{t-1}) + SDC_i \ (1 - u_i^{t+1})] + \sum_{i=1}^{N} \sum_{t=1}^{h} SPC_i^t$$
(1)

A.1. Fuel Cost

Fuel cost of a thermal unit is expressed as a second order function of generated power of the unit.

$$F_i(P_i^t) = a_i + b_i P_i^t + c_i (P_i^t)^2$$
(2)

where, a_i , b_i , and c_i are positive fuel cost coefficients of thermal unit *i*. The unit fuel cost function is nonlinear in nature. It can be approximated accurately by a set of piecewise blocks [19]. For practical implementation, the piecewise linear function is indistinguishable from the nonlinear model if enough segments are used. The analytic representation of this linear approximation is:

$$F_i^t = F_i^{\min} \times u_i^t + \sum_{m=1}^{NSF(i)} Pm_i^t \times bm_i$$
(3)

A.2. Startup Cost

The startup cost is related to either hot or cold conditions, where it can be expressed as follows:

$$SUC_{i} = \begin{cases} HSC_{i} & MD_{i} \leq XD_{i}^{t} \leq HD_{i} \\ CSC_{i} & XD_{i}^{t} > HD_{i} \end{cases}$$
(4)

$$HD_i = MD_i + CSH_i \tag{5}$$

A typical exponential startup cost function is shown in Figure 1, where the time span has been divided into hourly periods [20]. The discrete startup cost can be approximated asymptotically by a stair wise function, which is more accurate as the number of intervals increases.

Figure 1. Exponential, discrete, and stair wise startup cost functions [20]

A.3. Spinning Reserve Cost

Spinning reserve cost of a unit can be described as follows [21]:

$$SPC_i^t = PR_i^t \times SR_i^t \tag{6}$$

$$PR_{i}^{t} = 0.1 \times \left(\frac{F(P_{i}^{t}) - F(P_{i}^{t} - 2)}{2}\right)$$
(7)

B. Constraints

The essential power supplied from committed units subjected to their generation limits, associated with PEVs must satisfy the load demand:

$$D^{t} = \sum_{i=1}^{N} \sum_{t=1}^{h} \left[P_{i}^{t} \ u_{i}^{t} \right] + \sum_{t=1}^{h} \left[pv \ N_{dsch}^{t} \right]$$
(8)

$$P_i^{\min} \le P_i^t \le P_i^{\max} \tag{9}$$

On the other hand, spinning reserve requirement, R(t), must be sufficient enough to prevent any undesirable load shedding in case of an outage or unexpected increasing of demand. It is usually a pre-specified amount that is either equal to the largest unit or a given percentage of the forecasted load [22]. Mathematically, R(t) at each hour is the total amount of maximum capacity of all synchronized units minus the total generating output in that hour which can be given by the Equation (11).

$$D^{t} + R^{t} \le \sum_{i=1}^{N} \sum_{t=1}^{h} [P_{i}^{\max} \ u_{i}^{t}] + \sum_{t=1}^{h} [pv \ N_{dsch}^{t}]$$
(10)

Once a unit is committed, it must remain "on" for a minimum number of hours given in Equation (11), and accordingly if a unit is shutdown, it must remain "off "for a minimum number of hours given in Equation (12).

if
$$u_i^t = 1$$
 then $(1 - u_i^{t+1}) MU_i \le XU_i^t$ (11)

$$\text{if } u_i^t = 0 \text{ then } u_i^{t+1} MD_i \le XD_i^t \tag{12}$$

The variation of a unit output is limited by ramp up/down rate at each hour:

if
$$u_i^t = 1 \& u_i^{t-1} = 1$$
 then $P_i^t - P_i^{t-1} \le RU_i$ (13)

if
$$u_i^t = 1 \& u_i^{t-1} = 1$$
 then $p_i^{t-1} - p_i^t \le RD_i$ (14)

In order to have a reliable operation, limited number of PEVs should charge/discharge at the same time over a predefined horizon.

$$\sum_{t=1}^{h} N_{dsch}^{t} = N^{\max}$$
⁽¹⁵⁾

For sake of simplicity, charging/discharging frequency is assumed once a day, respectively. Each vehicle should have a desired departure State Of Charge (SOC) level, while η is defined as integrated efficiency for charging/discharging plus inverter [23].

III. SIMULATION STUDIES AND RESULTS ANALYSIS

A standard IEEE 10-unit system presented in Table 1 is considered for simulation study with 50000 PEVs. Spinning reserve requirement is assumed 10% of hourly load demand in 24-hour scheduling period. According to [24], the following parameters are presumed for PEVs, maximum battery capacity=25 kWh, minimum battery capacity=10 kWh, average battery capacity (pv)=15 kWh, charging/discharging frequency=1 per day, departure state of charge (δ)=50%, total efficiency (η)=85%.

Three different scenarios are studied in this paper (Table 2). First scenario consists typical unit commitment problem, while an integration of spinning reserve cost into UC problem is second one. Third scenario comprises of integration 50000 PEVs charged by renewable sources and discharged to power grid to conventional UC problem considering spinning reserve cost. Maximum number of discharging vehicles at each hour ($N_{dschv2gmax}(t)$) for scenario 3 is 10% of total vehicles.

A. Scenario 1

The result of UC without PEVs and spinning reserve cost is presented in Table 3. As it can be seen from Table 3, two least expensive units 1 & 2 are committed in 24 hour while unit 1 always generates its maximum power. Additionally, units 7, 9 and 10, which are the most expensive units always supply spinning reserve as well as power at their minimum limits.

Table 2. Details of scenarios

Scenarios	Details
Scenario 1	Thermal units without PEVs and spinning reserve cost
Scenario 2	Thermal units with spinning reserve cost without PEVs
Scenario 3	Thermal units with spinning reserve cost and 50,000 PEVs

Table 1. Unit characteristics of the 10-unit system

Parameters	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10
$P^{\max}(MW)$	455	455	130	130	162	80	85	55	55	55
$P^{\min}(MW)$	150	150	20	20	25	20	25	10	10	10
$a (h^{-1})$	1000	970	700	680	450	370	480	660	665	670
$b (MWh^{-1})$	16.19	17.26	16.6	16.5	19.7	22.26	27.74	25.92	27.27	27.79
c (\$MWh ^{2 -1})	0.00048	0.00031	0.002	0.00211	0.00398	0.00712	0.0079	0.00413	0.00222	0.00173
MUT (h)	8	8	5	5	6	3	3	1	1	1
MDT (h)	8	8	5	5	6	3	3	1	1	1
Cold Start cost (\$)	9000	10000	1100	1120	1800	340	520	60	60	60
Hot start cost (\$)	4500	5000	550	560	900	170	260	30	30	30
Cold start hour (h)	5	5	4	4	4	2	2	0	0	0
Shut down cost (\$)	0	0	0	0	0	0	0	0	0	0
Initial status (h)	8	8	-5	-5	-6	-3	-3	-1	-1	-1

Table 3. Schedule and dispatch of generating units for Scenario 1

Hour	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	Demand	Spinning reserve
пош	(MW)	(MW)	(MW)									
1	455	245	0	0	0	0	0	0	0	0	700	210
2	455	295	0	0	0	0	0	0	0	0	750	160
3	455	370	0	0	25	0	0	0	0	0	850	222
4	455	455	0	0	40	0	0	0	0	0	950	122
5	455	390	0	130	25	0	0	0	0	0	1000	202
6	455	360	130	130	25	0	0	0	0	0	1100	232
7	455	410	130	130	25	0	0	0	0	0	1150	182
8	455	455	130	130	30	0	0	0	0	0	1200	132
9	455	455	130	130	85	20	25	0	0	0	1300	197
10	455	455	130	130	162	33	25	10	0	0	1400	152
11	455	455	130	130	162	73	25	10	10	0	1450	157
12	455	455	130	130	162	80	25	43	10	10	1500	162
13	455	455	130	130	162	33	25	10	0	0	1400	152
14	455	455	130	130	85	20	25	0	0	0	1300	197
15	455	455	130	130	30	0	0	0	0	0	1200	132
16	455	310	130	130	25	0	0	0	0	0	1050	282
17	455	260	130	130	25	0	0	0	0	0	1000	332
18	455	360	130	130	25	0	0	0	0	0	1100	232
19	455	455	130	130	30	0	0	0	0	0	1200	132
20	455	455	130	130	162	33	25	10	0	0	1400	152
21	455	455	130	130	85	20	25	0	0	0	1300	197
22	455	455	0	0	145	20	25	0	0	0	1100	137
23	455	425	0	0	0	20	0	0	0	0	900	90
24	455	345	0	0	0	0	0	0	0	0	800	110

Figure 2. The value of spinning reserve for different scenarios

	D.	<i>D</i> .	р.	D.	<i>D</i> .	р.	<i>D</i> _	<i>D</i> .	D .	D	Demand	Spinning reserve
Hour	Γ_1	(MW)		Γ_4		r_6	F_7			I 10 (MW)	(MW)	(MW)
1	(101 00)	245	(\mathbf{W},\mathbf{W})	(\mathbf{W},\mathbf{W})	$(\mathbf{W} \mathbf{W})$	$(\mathbf{W} \mathbf{W})$	(\mathbf{W},\mathbf{W})	(\mathbf{W},\mathbf{W})	$(\mathbf{W} \mathbf{W})$	$(\mathbf{W}\mathbf{W})$	700	(101 00)
1	455	245	0	0	0	0	0	0	0	0	700	210
2	455	295	0	0	0	0	0	0	0	0	/50	160
3	455	370	0	0	25	0	0	0	0	0	850	222
4	455	455	0	0	40	0	0	0	0	0	950	122
5	455	390	0	130	25	0	0	0	0	0	1000	202
6	455	360	130	130	25	0	0	0	0	0	1100	232
7	455	410	130	130	25	0	0	0	0	0	1150	182
8	455	455	130	130	30	0	0	0	0	0	1200	132
9	455	455	130	130	100	20	0	10	0	0	1300	167
10	455	455	130	130	162	33	25	10	0	0	1400	152
11	455	455	130	130	162	73	25	10	10	0	1450	157
12	455	455	130	130	162	80	25	43	10	10	1500	162
13	455	455	130	130	162	33	25	10	0	0	1400	152
14	455	455	130	130	100	20	0	10	0	0	1300	167
15	455	455	130	130	30	0	0	0	0	0	1200	132
16	455	310	130	130	25	0	0	0	0	0	1050	282
17	455	260	130	130	25	0	0	0	0	0	1000	332
18	455	360	130	130	25	0	0	0	0	0	1100	232
19	455	455	130	130	30	0	0	0	0	0	1200	132
20	455	455	130	130	162	38	0	10	10	10	1400	177
21	455	455	130	130	100	20	0	10	0	0	1300	167
22	455	455	0	130	40	20	0	0	0	0	1100	182
23	455	425	0	0	0	20	0	0	0	0	900	90
24	455	345	0	0	0	0	0	0	0	0	800	110

Table 4. Schedule and dispatch of generating units for Scenario 2

Table 5. Schedule and dispatch of generating units for Scenario 3

Hour	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	M	P_{v2g}	Demand	Spinning reserve
Houi	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	IV_{v2g}	(MW)	(MW)	(MW)
1	455	245	0	0	0	0	0	0	0	0	0	0	700	210
2	455	295	0	0	0	0	0	0	0	0	0	0	750	160
3	455	370	0	0	0	0	0	0	0	0	3922	25	850	110
4	455	360	0	130	0	0	0	0	0	0	784	5	950	100
5	455	390	0	130	25	0	0	0	0	0	0	0	1000	202
6	455	455	0	130	31.85	0	0	0	0	0	4416	28.15	1100	158.3
7	455	410	130	130	25	0	0	0	0	0	0	0	1150	182
8	455	455	130	130	30	0	0	0	0	0	0	0	1200	132
9	455	455	130	130	78.125	20	0	0	0	0	5000	31.875	1300	175.75
10	455	455	130	130	143.125	20	25	10	0	0	5000	31.875	1400	215.75
11	455	455	130	130	162	41.125	25	10	10	0	5000	31.875	1450	220.75
12	455	455	130	130	162	80	25	11.125	10	10	5000	31.875	1500	225.75
13	455	455	130	130	143.125	20	25	10	0	0	5000	31.875	1400	215.75
14	455	455	130	130	78.125	20	0	0	0	0	5000	31.875	1300	175.75
15	455	455	130	130	29.4	0	0	0	0	0	94	0.6	1200	133.2
16	455	310	130	130	25	0	0	0	0	0	0	0	1050	282
17	455	260	130	130	25	0	0	0	0	0	0	0	1000	332
18	455	360	130	130	25	0	0	0	0	0	0	0	1100	232
19	455	455	130	130	25	0	0	0	0	0	784	5	1200	142
20	455	455	130	130	158.125	20	0	10	10	0	5000	31.875	1400	185.75
21	455	455	130	130	78.125	20	0	0	0	0	5000	31.875	1300	175.75
22	455	365	130	130	0	20	0	0	0	0	0	0	1100	150
23	455	425	0	0	0	20	0	0	0	0	0	0	900	140
24	455	345	0	0	0	0	0	0	0	0	0	0	800	110

B. Scenario 2

The result of scenario 2 is presented in Table 4. As shown in Table 4, by adding spinning reserve cost term to the objective function, committed hours of unit 7, which is most expensive unit decreases significantly. In scenario 1 at hours 9 and 14 for supplying spinning reserve requirement unit 7, which is more expensive and has ability to produce more power than units 8 to 10 has been turned on. But in scenario 2 and by adding cost term of spinning reserve to objective function at hours 9 and 14, unit 8 which is less expensive than unit 7 has been turned on, consequence has been happened at hours 20 to 22 too.

C. Scenario 3

Table 5 presents results of scenario 3. As it can be seen from Table 5, by integrating 50000 PEVs, committed hours of units 5, 8 and 10, which are relatively expensive decreases significantly. In addition, total generation of unit 6 reduces. According to Tables 3 and 4 at hour 3 unit 5 has been turned on to supply spinning reserve but as it can be seen from Table 5 at hour 3 generating 25 MW by PEVs causes to turn unit 5 off. Figure 2 demonstrates the values of spinning reserve for different scenarios.

As it can be seen from this figure by integrating PEVs the amount of spinning reserve at hours 9 to 14 increases

significantly which leads to improvement of reliability. Therefore, it can be concluded that the spinning reserve is higher in the attendance of PEVs through the parking lot in the UC problem, which shows the effectiveness of V2G parking lot consideration in the reserve market and its role in maintaining reliability of the power system.

Table 6 shows the result of the proposed methodology for different scenarios. As it can be seen from this Table, by adding spinning reserve cost term to the objective function of UC problem (scenarios 2 and 3), spinning reserve cost decreases significantly. Also total costs of Scenario 3 is lower than other scenarios which shows the effectiveness of integrating PEVs for decreasing total operation costs.

Table 6. The operating, spinning, and total costs of proposed method for different scenarios

Cost (\$)	Scenario 1	Scenario 2	Scenario 3
Operating	562838.2	563171.4	559346
Spinning reserve	8985.442	8861.61	7578.127
Total	571823.6	572033	566924.2

Table 7 shows a comparison between results of scenarios one with recent methods addressed in literature. As Table 7 shows, the proposed approach produces better results than other methods.

Table 7. Comparison of total cost of the proposed method with recent researches for 10-unit system

	Metho	ods	Scenario 1	Metho	ods	Scenario 1
	Despessed	Best	-		Best	-
	Proposed	Worst	-	SFLA [25]	Worst	-
	method	Average	562838.2		Average	564769
		Best	563741.8		Best	565825
	PSO [23]	Worst	565443.3	LR [26]	Worst	-
\$		Average	564743.5		Average	-
st (ICGA [27]	Best	-		Best	564551
S		Worst	-	EP [28]	Worst	566231
tal		Average	566404		Average	565352
T_0		Best	-		Best	563942
	LRGA [29]	Worst	-	HPSO [30]	Worst	565785
		Average	564800		Average	564772
		Best	565825		Best	-
	GA [26]	Worst	570032	LS [31]	Worst	-
		Average	-		Average	564970

IV. CONCLUSIONS

In this paper, an involving integration of PEVs and spinning reserve cost term to the unit commitment problem has been presented. This complex mixed integer nonlinear problem has been linearized, modeled and solved by GAMS software. The proposed model has been successfully applied to IEEE 10-unit system. From the results obtained, it can be concluded that integrating PEVs reduces the operation costs significantly. Also the proposed methodology demonstrates the capability of V2G to improve power system reliability.

NOMENCLATURES

 a_i, b_i, c_i : Fuel cost coefficients of unit *i* bm_i : Slope of segment *m* in linearized fuel cost curve CSH_i : Cold start hour of *i*th unit CS: Cold startup cost of *i*th unit

 D^t : Load demand at time t

 $F_i(P_i^t)$: Fuel cost function

 F_i^{\min} : Lower limit on the fuel cost of a unit

h : Scheduling hours

HS : Hot startup cost of *i*th unit

 MU_i / MD_i : Minimum up/down time of unit i

N : Number of units

 N_{dsch}^{t} : Number of vehicles that discharge when connected to the grid at hour *t*

 N^{\max} : Total vehicles in the system

 N_{dsch}^{\min} : Minimum number of discharging vehicles at hour t

 N_{dsch}^{\max} : Maximum number of discharging vehicles at hour *t* NSF(i): Number of segments for the piecewise linearized fuel cost curve

 P_i^t : Output power of *i*th unit at time t

 P_i^{\min} / P_i^{\max} : Maximum/minimum output limit of *i*th unit

 Pm_i^t : Generation of segment *m* in linearized fuel cost curve

 PR_i^t : Bidding price for spinning reserve of unit *i* at time *t*

pv: Capacity of each vehicle

 R^t : System reserve requirement at hour t

 RU_i / RD_i : Ramp up/down rate of unit *i*

 SPC_i^t : Spinning reserve cost of unit *i* at time *t*

 SR_i^t : Value of spinning reserve supply by unit *i*

 SUC_i : Startup cost of unit *i*

 SDC_i : Shutdown cost of unit *i*

 u_i^t : *i*th unit status at hour t (1/0 for on/off)

 XU_i^t : Duration of continuously on of unit *i* at time *t*

 XD_i^t : Duration of continuously off of unit *i* at time *t*

 η : Efficiency

 δ : State of charge

REFERENCES

[1] K. Moslehi, R. Kumar, "A Reliability Perspective of the Smart Grid", IEEE Transactions on Smart Grid, Vol. 1, pp. 57-64, 2010.

[2] H. Lund, W. Kempton, "Integration of Renewable Energy into the Transport and Electricity Sectors Through V2G", Energy Policy, Vol. 36, pp. 3578-3587, 2008.

[3] C. Yijia, T. Shengwei, L. Canbing, Z. Peng, T. Yi, Z. Zhikun, L. Junxiong, "An Optimized EV Charging Model Considering TOU Price and SOC Curve", IEEE Transactions on Smart Grid, Vol. 3, pp. 388-393, 2012.

[4] J. Soares, T. Sousa, H. Morais, Z. Vale, P. Faria, "An Optimal Scheduling Problem in Distribution Networks Considering V2G", IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), pp. 1-8, 2011.

[5] C. Fernandes, P. Frias, J.M. Latorre, "Impact of Vehicle-to-Grid on Power System Operation Costs - The Spanish Case Study", Applied Energy, Vol. 96, pp. 194-202, 2012.

[6] P.D.K. Parks, T. Markel, "Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging

in the Xcel Energy Colorado service territory", Technical Report NREL/TP-640-41410, 2007.

[7] J. Kiviluoma, P. Meibom, "Methodology for Modelling Plug-In Electric Vehicles in the Power System and Cost Estimates for A System with either Smart or Dumb Electric Vehicles", Energy, Vol. 36, pp. 1758-1767, 2011.

[8] R. Sioshansi, J. Miller, "Plug-In Hybrid Electric Vehicles can be Clean and Economical in Dirty Power Systems", Energy Policy, Vol. 39, pp. 6151-6161, 2011.

[9] R. Sioshansi, P. Denholm, "Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services", Environmental Science and Technology, Vol. 43, pp. 1199-1204, 2009.

[10] W. Kempton, J. Tomic, "Vehicle-to-Grid Power Implementation - From Stabilizing the Grid to Supporting Large-Scale Renewable Energy", Journal of Power Sources, Vol. 144, pp. 280-294, 2005.

[11] C. Guille, G. Gross, "A Conceptual Framework for the Vehicle-to-Grid (V2G) Implementation", Energy Policy, Vol. 37, pp. 4379-4390, 2009.

[12] S.K. Mullen, "Plug-In Hybrid Electric Vehicles as a Source of Distributed Frequency Regulation", University of Minnesota, 2009.

[13] P.B. Evans, S. Kuloor, B. Kroposki, "Impacts of Plug-In Vehicles and Distributed Storage on Electric Power Delivery Networks", IEEE Vehicle Power and Propulsion Conference, VPPC '09, pp. 838-846, 2009.

[14] S.D. Breucker, P. Jacqmaer, K.D. Brabandere, J. Driesen, R. Belmans, "Grid Power Quality Improvements Using Grid-Coupled Hybrid Electric Vehicles PEMD 2006", The 3rd IET International Conference on Power Electronics, Machines and Drives, pp. 505-509, 2006.

[15] S. Acha, T.C. Green, N. Shah, "Impacts of Plug-In Hybrid Vehicles and Combined Heat and Power Technologies on Electric and Gas Distribution Network Losses", IEEE PES/IAS Conference on Sustainable Alternative Energy (SAE), pp. 1-7, 2009.

[16] S. Acha, T.C. Green, N. Shah, "Effects of Optimized Plug-In Hybrid Vehicle Charging Strategies on Electric Distribution Network Losses", IEEE PES Transmission and Distribution Conference and Exposition, pp. 1-6, 2010.

[17] H. Shayeghi, H.Gh. Firoozjaee, A. Ghasemi, O. Abedinia, R. Bazyar, "Optimal Thermal Generating Unit Commitment with Wind Power Impact - A PSO-IIW Procedure", International Journal on Technical and Physical Problems of Engineering (IJTPE), Issue 11, Vol. 4, No. 2, pp. 90-97, June 2012.

[18] D. Habibinia, M. Ebadpour, M.B.B. Sharifian, Y. Najafi Sarem, M.J. Khosrovjerdi, "Mixed H_2/H_{∞} Approach to Detect Fault in Parallel Hybrid Electric Vehicle", International Journal on Technical and Physical Problems of Engineering (IJTPE), Issue 16, Vol. 5, No. 3, pp. 126-132, September 2013.

[19] L. Tao, M. Shahidehpour, "Price-Based Unit Commitment - A Case of Lagrangian Relaxation versus Mixed Integer Programming", IEEE Transactions on Power Systems, Vol. 20, pp. 2015-2025, 2005. [20] M. Carrio, J.M. Arroyo, "A Computationally Efficient Mixed-Integer Linear Formulation for the Thermal Unit Commitment Problem", IEEE Transactions on Power Systems, Vol. 21, pp. 1371-1378, 2006.

[21] F. Aminifar, M. Fotuhi-Firuzabad, M. Shahidehpour, "Unit Commitment with Probabilistic Spinning Reserve & Interruptible Load Considerations", IEEE Transactions on Power Systems, Vol. 24, pp. 388-397, 2009.

[22] A. Abdollahi, M.P. Moghaddam, M. Rashidinejad, M.K. Sheikh-El-Eslami, "Investigation of Economic and Environmental-Driven Demand Response Measures Incorporating UC", IEEE Transactions on Smart Grid, Vol. 3, pp. 12-25, 2012.

[23] A.Y. Saber, G.K. Venayagamoorthy, "Intelligent Unit Commitment with Vehicle-to-Grid - A Cost-Emission Optimization", Journal of Power Sources, Vol. 195, pp. 898-911, 2010.

[24] J. Ebrahimi, S.H. Hosseinian, G.B. Gharehpetian, "Unit Commitment Problem Solution Using Shuffled Frog Leaping Algorithm", IEEE Transactions on Power Systems, Vol. 26, pp. 573-581, 2011.

[25] S.A. Kazarlis, A.G. Bakirtzis, V. Petridis, "A Genetic Algorithm Solution to the Unit Commitment Problem", IEEE Transactions on Power Systems, Vol. 11, pp. 83-92, 1996.

[26] I.G. Damousis, A.G. Bakirtzis, P.S. Dokopoulos, "A Solution to the Unit Commitment Problem Using Integer-Coded Genetic Algorithm", IEEE Transactions on Power Systems, Vol. 19, pp. 1165-1172, 2004.

[27] K.A. Juste, H. Kita, E. Tanaka, J. Hasegawa, "An Evolutionary Programming Solution to the Unit Commitment Problem", IEEE Transactions on Power Systems, Vol. 14, pp. 1452-1459, 1999.

[28] C. Chuan-Ping, L. Chih-Wen, L. Chun-Chang, "Unit Commitment by Lagrangian Relaxation and Genetic Algorithms", IEEE Transactions on Power Systems, Vol. 15, pp. 707-714, 2000.

[29] T.O. Ting, M.V.C. Rao, C.K. Loo, "A Novel Approach for Unit Commitment Problem via an Effective Hybrid Particle Swarm Optimization", IEEE Transactions on Power Systems, Vol. 21, pp. 411-418, 2006.

[30] T. Seki, N. Yamashita, K. Kawamoto, "New Local Search Methods for Improving the Lagrangian Relaxation Based Unit Commitment Solution", IEEE Transactions on Power Systems, Vol. 25, pp. 272-283, 2010.

BIOGRAPHIES

Reza Ghadiri Anari was born in Anar, Iran, in July 19, 1979. He received the B.Sc. degree in Electronics Engineering from Shahid Bahonar University, Kerman, Iran and the M.Sc. degree in Power Electrical Engineering from Shiraz University, Shiraz, Iran, in 2002 and 2005.

respectively. He is currently working toward the Ph.D. degree in the Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran. His research interests include Power systems, Genetic Algorithm and Distribution Systems.

Masoud Rashidinejad received his B.Sc. degree in Electrical Engineering and M.Sc. degree in Systems Engineering from Isfahan University of Technology, Isfahan, Iran. He received his Ph.D. in Electrical Engineering from Brunel University, London, UK, 2000. He is currently a

Professor in the Department of the Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran. His area of interests is power system optimization, power system planning, electricity restructuring, and energy management.

Mahmud Fotuhi Firuzabad received the B.Sc. degree from the from the Sharif University of Technology, Tehran, Iran, in 1986, the M.Sc. degree from Tehran University, Tehran, in 1989, and the M.Sc. and Ph.D. degrees from the University of Saskatchewan, Saskatoon, SK,

Canada, in 1993 and 1997, respectively, all in Electrical Engineering. Currently, he is a Professor and Head of the Department of Electrical Engineering, Sharif University of Technology. He is a member of the Center of Excellence in Power System Control and Management. He is the Associate Editor of the IEEE Transactions on Smart Grid.