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Abstract- In this paper, the problem of trajectory 

tracking control of nonholonomic mobile robot is 

investigated via an intelligent cascaded control strategy. 

The vehicle inverse dynamic is represented and 

controlled utilizing neural networks and the kinematics is 

controlled by feedback linearization. Simulation results 

demonstrate the high efficiency of the proposed strategy. 
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I. INTRODUCTION 

Mobile robots are autonomous vehicles equipped to 

perform missions in variety of environments with fixed or 

uncertain conditions and are increasingly becoming the 

center of attention of engineers. The motion of 

nonholonomic mechanical systems, however, is restricted 

by their own kinematics so the control law could not be 

driven in a straightforward manner [1, 2]. 

The design objective in mobile robot motion control is 

to control both kinematics and dynamics of the vehicle. 

First step is to design a controller for kinematic model 

assuming that velocity tracking is perfect. Feedback 

linearization could be utilized to fulfill this objective. 

Even though the proposed method is efficient in 

controlling the vehicle, it neglects the dynamic model. 

Taking into account the dynamics is more realistic and 

different attempts are made to solve this problem [3, 4]. 

Second step in motion control is to control the 

dynamic model. A neural inverse dynamic is introduced 

for this mean. Neural networks are proper choices in the 

identification and control of dynamic systems. They can 

successfully be utilized for modeling nonlinear systems 

and also for implementing of nonlinear controllers [5-8]. 

In this paper, a cascaded feedback linearizing control 

strategy is developed to control the mobile robot. The 

strategy requires two control loops, the first of which is 

the inner control loop for dynamic model to control the 

linear and angular velocities of the robot. The desired 

position tracking is carried out via outer control loop of 

the kinematic model. Evolutionary algorithms can be used 

to improve the tracking results. In this paper, first a cost 

function consist of step response main factors is defined 

and genetic algorithm (GA) is applied in order to 

minimize it. Paper is organized as follows: Section II is 

devoted to the mobile robot kinematics and dynamics, 

Section III deals with the applied controllers. Section IV 

gives a brief introduction of genetic algorithm. Section V 

contains simulation results and section VI concludes the 

paper. 
 

II. NONHOLONOMIC MOBILE ROBOT 

Figure 1 presents the structure of the robot. It has two 

driving wheels that are controlled independently by two 

motors. Mobile robot also has one passive orientable 

wheel placed in front of the vehicle. This wheel helps 

preventing the robot from possible tipping over while 

moving on a plane. As it is illustrated in the figure, (x, y) 

are the position coordinates in the world reference frame 

and the heading direction from the x-axis is shown by θ. 

 

 
 

Figure 1. Mobile robot 

 

The following equations of motion present the 

kinematics of the mobile robot [9], 

( )q S q V  (1) 

where, 

cos 0

( ) sin 0

0     1

S q





 
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. The dynamics of 

the mobile robot is, 

( ) ( , )M q V C q q V DV     (2) 

where, q=(x, y, θ) is the generalized coordination vector, 

V=[v ω]T is the vector of velocities including both linear 
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velocity v and angular velocity ω, τ1 and τ2 are the torques 

that are applied on left and right wheels and are presented 

by the vector τ = [τ1 τ2]T and M(q) is a 2×2 positive definite 

inertia matrix. 

Centripetal and Coriolis forces are represented by the 

vector ( , )C q q  and D  is a 2×2 diagonal positive definite 

matrix. The nonholonomic constraint, which prevents the 

robot from slipping sideways, is introduced by the 

following equation [10], 

( ) cos sin 0A q q y x     (3) 

 

III. APPLIED CONTROL STRATEGY 

Controlling  mobile  robot  undergoes two main stages,  

the first of which is to control the dynamics, regarding 

linear and angular velocities as outputs. When the 

dynamics is controlled one can proceed into second stage 

which is to control the kinematics i.e. the position of the 

vehicle. So, taking into account both dynamics and 

kinematics, designing the controller structure requires two 

main loops: 

1. The inner loop that is based on robot dynamic model 

and is utilized to control linear and angular velocities of 

mobile robot. 

2. The outer loop is dependent on kinematics and helps 

control the position of the robot. Figure 2 depicts the 

block diagram of the described cascaded control structure.

 

 
 

Figure 2. Block diagram of cascaded control structure 

 

A. Dynamic Control of Mobile Robot 

The main idea of the inverse dynamics modeling for 

mobile robot is to find a feedback control based on the 

dynamic model of the system that is presented in         

Equation (2) [1]. The vector τ = [τ1 τ2]T is regarded as the 

input to the system and the velocity vector V=[v ω]T is the 

output of the system. The design objective is to find the 

control input torque τ in a way that, 

lim ( ) ( ) 0
s

r
t t

V t V t


   (4) 

where, Vr is the desired velocity vector and ts<∞ is the 

reachability time. Different approaches are made toward 

the inverse dynamic modeling of the mobile robot, 

including fuzzy control, pole placement and Hurwitz 

equation [3, 4].  

This paper takes benefits of neural networks to model 

the inverse dynamic of the system. Two major 

applications of neural networks are nonlinear systems 

identification and dynamic systems control [11]. These 

characteristics make them a proper choice for modeling 

the inverse dynamic [5]. Figure 3 shows the structure of 

the neural network that is used to model the inverse 

dynamics. The inputs of the neural network are the linear 

and angular velocities and the outputs of the network are 

the torques applied on the left and right wheels.  

As it is presented in the figure, the neural structure has 

three layers. The data remains unchanged passing through 

the first layer. Second and third layer activation functions 

are ‘tansig’ and ‘purlin’ respectively. When the dynamic 

model is controlled, one can proceed into second step that 

is to design a controller for kinematics of the robot. Next 

section is devoted to this step. 

 

B. Kinematic Control of Mobile Robot 

In this paper, feedback linearization approach is used 

to control the kinematics model of the robot. Mobile robot 

is not input-output linearizable using static feedback but is 

input-output linearizable based on dynamic state feedback.  

Using feedback linearization problem for trajectory 

tracking, a feedback compensator should be considered of 

the form [12], 

( , ) ( , )

( , ) ( , )

f q g q u

q q u

   

    

 

 
 (5) 

where, ξ is the 2×1 state vector and u is the 2×1 input 

vector, in a way that Equations (1) and (5) be equivalent to 

a linear system. 

 

 
 

Figure 3. Neural network structure used to model of robot inverse dynamics 

 

The problem of controlling kinematics model is 

followed based on the procedure developed by Oriole. The 

linearizing output vector is defined as η = [x, y]T and 

according to Equation (1), differentiating η will result in [13], 

cos 0

sin 0

x v

y




 

     
      
     

 (6) 

According to the equation the angular velocity ω has 

no effect on  . An integrator is added to the linear 

velocity input as: 
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cos
 ,  

sin
v a


   



 
     

 
 (7) 

where, ξ is state variable, a stands for mobile robot linear 

acceleration. Differentiating Equation (7) will result in, 

cos sin cos sin

sin cos sin cos

a    
  

     

        
         

       
 (8) 

Under the assumption ξ ≠ 0 the matrix multiplying by 

a



 
 
 

 is nonsingular and Equation (8) can be rewritten as: 

1
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u
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     
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   
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 (9) 

The resulting dynamic compensator is as follows: 

1 2

2 1

cos sin   ,  

cos sin

v u u v

u u

   

 




   




 (10) 

and the new coordinates is resulted as: 

1

2

3

4

z

cos

sin

z x

y

z x

z y

 

 





 

 

 (11) 

Based on Equation (11) the extended system 

kinematics is linearized and described by two chains of 

integrators, 

1 1

2 2

z u

z u




 (12) 

An exponentially stabilizing feedback for the 

trajectory tracking can be driven based on the decoupled 

and fully linear system of Equation (12), 

1 1 1

2 2 2

( ) ( )

( ) ( )

r d r p r

r d r p r

u x K x x K x x

u y K y y K y y

    

    
 (13) 

Finally the related dynamic errors are resulted as: 

1 1

2 2

( ) ( ) 0

( ) ( ) 0

x d x p x

y d y p y

e t K e t K e

e t K e t K e

  

  
 (14) 

where, x and y are the coordinates of the mobile robot, xr  

and yr are the desired coordinates and ex,y is the error 

between actual and desired coordination. Kp and Kd are the 

gains which should be properly chosen so that the 

characteristic equations are Hurwitz. 

Proper Gain selection is important in controlling 

process. A good performance indicator in the time domain 

should include the main step response factors which are 

the overshoot ( Mp ), rise time (
rt ), settling time ( st ), and 

steady-state error ( ssE ). A cost function consisting of all 

these parameters is defined as, 

)())(1()( rsss tteEMpekf     (15) 

where   is the weighting factor. Evolutionary algorithms 

are strong tools in optimizing cost functions. In this paper 

genetic algorithm is utilized to fulfill this aim. 

 

IV. GENETIC ALGORITHM - A BRIEF REVIEW 

Genetic Algorithm is the first evolutionary algorithm, 

developed by Jon Holland [14] the basis of which is 

placed on the natural process of evolution through 

reproduction. Being able to solve many nonlinear and 

large problems, GA has become so useful in a large 

variety of applications. This algorithm starts with a 

random numbers (population) each of which is called a 

chromosome.  

Chromosomes’ fitness are evaluated by the cost 

function. The cost values are then sorted. A specific 

amount of worst chromosomes-those with higher costs- 

are ignored via elimination. At this stage the discarded 

chromosomes are replaced by new offsprings. The better 

chromosomes’-parents’-produce offspring chromosomes 

via pairing and crossover. The offsprings will help 

breeding new chromosomes on next iterations. This way, 

on each of the iterations the worst chromosomes will be 

replaced by better ones. This procedure will help the 

information flow throughout the population. After 

crossover, during the mutation stage a certain rate of the 

population, are randomly selected and substituted by 

other random values. Due to elitism, the best 

chromosome which has the lowest cost value will remain 

unchanged during the mutation.  

After applying the mutation to the generation, the new 

population will be re-evaluated. As far as the stopping 

conditions are not satisfied the algorithm will keep on 

computing the cost function in new iterations. If the 

stopping criteria are satisfied the algorithm will terminate 

and the chromosome with the lowest cost value will be 

the desired parameters set [15, 16]. 

 

V. SIMULATION RESULTS 

In this section, the efficiency of the proposed control 

strategy is evaluated via simulation results. The matrix 

numerical values of kinematic and dynamics equations are 

as follows [17], 

0.3749 0.0202 10 0
( )  , 

0.0202 0.3739 0 10

0 0.135
( , )

0.135 0

M q D

C q q




   
    

   

 
  

 

 

The controller parameters are first chosen by trial and 

error in order to satisfy the tracking performance. These 

values are set to Kp1 = Kp2 = Kd1 = Kd2 = 2. As the first step, 

it is necessary to control the system dynamics. Neural 

inverse dynamic is utilized to control the linear and 

angular velocities. The hidden layer consists of four 

neurons and output layer has two neurons. 

Hidden and output layer activation functions are 

‘tansig’ and ‘purlin’ respectively. 5000 samples with 

sampling time of 0.001 s is fed to the network and feed 

forward back propagation is utilized to train the network 

in 1000 epochs. Simulation results are carried out to show 

the effectiveness of the proposed method. Figure 4 and            

Figure 5 present the linear velocity tracking results and the 

related tracking error respectively. 
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Figure 4. Linear velocity by applying the cascaded controller 

 

 
 

Figure 5. Linear velocity tracking error by applying cascaded controller 

 

As the figures present, the utilized neural network is 

able to control the linear velocity and the desired value is 

tracked. Figure 6 and Figure 7 present the angular velocity 

tracking results and the related tracking error respectively. 
 

 
 

Figure 6. Angular velocity by applying the cascaded controller 

 

 
 

Figure 7. Angular velocity tracking error by applying cascaded controller 

 

The proposed method is efficient in dynamic control 

of mobile robot since it forces the system to track the 

desired linear and angular velocities and related errors fall 

in an acceptable range. Second step is to control the 

system kinematics, i.e. the mobile robot position. The 

initial position of mobile robot is considered as               

(x, y) = (-0.5, 0.5). The vehicle is then commanded to 

track a desired trajectory. Figure 8 presents the trajectory 

tracking regarding the cascaded control strategy. 

 
 

Figure 8. Trajectory tracking regarding cascaded controller 

 

As the figures present, applying feedback linearization 

method force the vehicle to track the desired trajectory. 

So, the control approach is capable of controlling the 

nonholonomic mobile robot velocity and position in an 

effective way and the results show the ability of the 

intelligent cascaded controller. 

 

 
 

Figure 9. Trajectory tracking regarding cascaded controller for a circle path 

 

 
 

Figure 10. Each coordinate trajectory tracking regarding cascaded controller 

 

In order to investigate the performance more precisely 

another reference trajectory is regarded for the vehicle. 

Figure 9 presents the x-y plane desired trajectory and 

controlled vehicle tracking result. Figure 10 presents each 

of the coordinates and figure 11 presents the resulted 

dynamic control, i.e. the linear and angular velocities 

tracking results. 
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Figure 11. Linear and angular velocity tracking regarding cascaded controller 

 

Utilizing evolutionary algorithms in order to optimize 

the cost function introduced in Equation (15) can help 

improve the tracking results. The GA initial population is 

set to 20 with 50 iterations. Mutation and selection rates 

are set to 0.4 and 0.5 respectively. Table 1 presents the 

obtained gain values. 

 
Table 1. Optimization results 

 

Kd2 Kp2  Kd1 Kp1  

6.3457 4.9961 3.834 5.1217 

 

 
 

Figure 12. Step response for the vehicle coordinates with and without 

optimized controller gains 

 

Figure 12 presents the desired coordinates xr and yr 

and the step responses of applying the controller with and 

without the optimized gains. Table 2 and Table 3 depict 

the main factors of the unit step response for the 

coordinates x and y regarding each controller. These 

factors are the rise time, overshoot, settling time and 

steady state error. 

According to Table 2 and Table 3 GA-optimized 

controller shows a better performance, regarding almost 

all of the step response factors. Figure 13 presents the 

velocity tracking for the GA-optimized controller. The 

optimized controller is capable of controlling the system 

kinematics and the system dynamics are also well tracked. 

Table 2. Step response factor for the first coordinate X  
 

Rising Time 

(sec) 
Overshoot 

Settling Time 

(sec) 

Steady State 

Error 

 

1.374 5.3% 4.898 0.0037 
Without 

Optimization 

1.016 1.64% 1.597 0 
GA-

Optimized 

 
Table 3. Step response factor for the first coordinate Y 

 

Rising Time 

(sec) 
Overshoot 

Settling Time 

(sec) 

Steady State 

Error 

 

3.019 3.32% 5.498 0.0004 
Without 

Optimization 

2.444 0% 4.617 0.0023 
GA-

Optimized 

 

 
Figure 13. Dynamic control for the vehicle with optimized controller 

gains 

 

VI. CONCLUSIONS 

A successful attempt has been made to develop a 

control method for a nonholonomic mobile robot. A 

model for the robot has been presented including the 

kinematics and dynamics of the vehicle. Two combined 

control algorithms were used to control this system via a 

cascaded structure, the first one of which was a neural 

network inverse dynamic controller designed to control 

the linear and angular velocities of the robot. Neural 

networks are strong candidates for system identification 

and control. Utilizing the neural network as the inverse 

dynamic of the vehicle, force it track the desired 

velocities. In the second step, a feedback linearization 

based controller was applied on the kinematics model of 

the system. The robot model is linearized based on 

dynamic state feedback. Linearizing the model and 

adjusting the controller parameters using GA make the 

robot track a desired trajectory. The cascaded controller 

has been applied on simulated system. The results 

demonstrate the high efficiency of the proposed method in 

controlling the robot. So this cascaded controller can be 

considered as a suitable method in controlling mobile 

robots. 
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