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Abstract- The stability analysis of slender structures 

requires carrying out geometrically nonlinear analysis. By 

following the nonlinear equilibrium path, it is possible to 

understand the phenomenon of collapse or buckling or the 

total bearing capacity of structures. Nonlinear equilibrium 

equations in the analysis of structures are often solved by 

using Newton-Raphson method, which is an incremental 

iterative procedure. However, the method diverges when 

reaches to a limit point. Therefore, only a part of the curve 

is obtained. To overcome the difficulties with limit points, 

displacement control techniques were introduced. The   

arc-length method is among the methods that were 

developed as an effort to enable solution algorithms to pass 

critical points. In this research, influence of incremental 

length size (l) for the arc-length control method was 

studied and implemented using Matlab software. To get 

fast convergence of the arc-length method, the increasing 

of incremental length causes convergence to be 

accelerated. However, the accuracy is decreased. To 

overcome this problem, a new constraint equation is 

suggested so that it helps the increasing of the accuracy.  

 

Keywords: Arc-Length Method, Nonlinear Analysis, 

Limit Points, Load-Displacement Path. 

 

I. INTRODUCTION  

Some of structures behave in a linear elastic fashion 

under service loads. The premise of linear elastic behavior 

forecloses the possibility of revealing any manifestation of 

nonlinearity. In this case, crucial information may be 

missing. However, prior to reaching the limit of resistance, 

almost all structures would exhibit significant nonlinear 

response. By using nonlinear analysis, the uncertainty 

regarding actual behavior may be reduced. In the process, 

however, the element of art in modeling the structure and 

in handling the equations of analysis is increased. 

In modeling, the analyst must decide what sources of 

nonlinearity are appropriate to be significant and how to 

represent them [1]. The stability analysis of slender 

structures requires carrying out geometrically nonlinear 

analysis [2]. With nonlinear structural analysis, buckling 

loads can be determined by checking the actual structural 

deformations during loading. The buckling strength of the 

structure and some other factors can be achieved. To get 

all these goals, it is necessary to draw full equilibrium path. 

This purpose requires carrying out nonlinear analysis 

to find out load-displacement diagram. In the early 60’s, 

the incremental technique in tracing the load-displacement 

curve of trusses and frames was developed by Turner et al 

[3] and Argyris [4]. However, the technique diverges when 

reaches to a limit point. Therefore, only a part of the curve 

is obtained. To overcome the difficulties with limit points, 

Zienkiewicz [5] proposed the displacement method. 

In this approach, a component of displacement vector 

remains constant. Batoz and Dhatt [6] proposed a simpler 

procedure of introducing the constant displacement 

constraint, which retains the symmetrical character of the 

tangent stiffness matrix and hence their method is 

convenient and efficient for computer programming. The 

constant displacement method is only capable of handling 

snap-through but not snap-back problems. To overcome 

these problems, the arc-length method was proposed. The 

arc-length method was then developed as another effort to 

enable solution algorithms to pass critical points. 

In relation to structural analysis, Riks [7] and Wempner 

[8] published the first attempt in this respect, using a linear 

constraint equation such that the iterative change was 

normal to the tangent. Later, several scholars modified the 

method by the means of altering the constraint equation, 

and therefore, the way of the corrector steps of the iterative 

procedure was developed. For example, Ramm [9] used a 

different linear constraint such that iterative change was 

normal to the secant change. The previous two methods 

were the first versions of the linearized arc-length method. 

At the same time, Crisfield did a further modification, 

introducing the spherical arc-length method [10], which 

uses a quadratic constraint or the Euclidean norm of the 

incremental displacement to a fixed quantity. To avoid the 

problems that arise in choice of a proper root, as Crisfield 

method required, a consistently linearized version of      

arc-length method using the same quadratic constraint was 

proposed by Schweizerhof and Wriggers [11]. 

 

II. ARC-LENGTH CONTROL METHOD 
The Load and Displacement Control methods fail to 

draw the complete equilibrium path in the presence of limit 

and turning points. The arc-length control method is 

intended to handle these critical points and draw the entire 

load-displacement response diagram. 
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The starting point of the arc-length control is the 

equilibrium equation in the form of the residuum r. 

   , 0i er d q d q     (1) 

where, qi is the internal force vector of the structure which 

is the function of the nodal displacement d, the vector qe is 

the external load vector and the scalar  is again the load 

level parameter. Further to the equilibrium Equation (1), 

an additional constraint is added to complete the set of 

equations. This constraint equation is the arc length s, 

defined by: 

s ds   (2) 

2 2. . . .T T
e eds dd dd d q q    (3) 

The arc-length method is then aimed to find the 

intersection of a given arc length s with the equilibrium 

equation, such that: 

 ( ) ( ) ( ) 0i er s q d s s q    (4) 

To solve Equation (4), a predictor-corrector scheme is 

used. Initially, the differential form of Equation (3) can be 

replaced with an incremental form, such that: 

   
2

2 2 0
T

i i i i T
e ea d d q q l         (5) 

where, l is the fixed radius of the desired intersection with 

the equilibrium path, also known as incremental length 

(Figure 1). In the same figure, the vector d and the scalar 

 are in incremental form and are related back to the last 

converged equilibrium state. Meanwhile, d and  are the 

iterative displacement vector and load level respectively. 

These are associated to the previous iteration step that, in 

most cases, is not an equilibrium state. 

In addition, the scaling parameter  is required in 

Equation (5) to combine different dimensions for load and 

displacement terms. The main essence of the arc-length 

method is that the load level  becomes now a parameter. 

Therefore, the total unknowns are n+1, n from the 

displacement variables of vector d and one from the load 

parameter . To solve this, Equation (1) gives a total of n 

equilibrium equations, while Equation (5) gives one 

constraint equation. These n+1 equations can be solved 

iteratively by applying the Newton-Raphson method to 

Equation (1) and Equation (5). Riks [7] and Wempner [8] 

first proposed this idea, though with a different constraint 

equation. A truncated Taylor series of Equation (1) and 

Equation (5) respectively yields: 

1 0i i i i i i i
t e

r r
r r d r K d q

d
   



  
      

 
 (6) 

 

1

1 22 2 0

i i i i

T
i i i i i i T

e e

a a
a a d

d

a a d d q q

 


  





 
     


      


 (7) 

where, Kt is the tangent stiffness matrix. The other terms 

have been already defined. Equation (6) and Equation (7) 

can be combined in a different way. 

 

1

22 2

i it e

T
i i i Ti i

e e

K qd r

d q q a



 


    

     
         

 (8) 

At this point, there are different ways to obtain the 

solution of Equation (8). Two different possibilities are 

given in follows. 

 

III. LINEARIZED ARC-LENGTH METHOD 

The simplest way is, to solve Equation (8) directly [11]. 

One may first find an expression for d and then replace it 

into . Consequently, from Equation (6), d becomes: 
1 1i i i

t t ed K r K q      (9) 

Therefore by means of the two iterative displacement 

vectors d  and td , Equation (9) can be re-expressed as: 

i i i i
td d d      (10) 

1

1

i i
t

i
t t e

d K r

d K q









  




 (11) 

By inserting of Equation (10) into Equation (7) yields: 

    22 . 2 .
2

iT
i i i i i i T

t e e

a
d d d q q           (12) 

This in turn, by solving for iterative load level  yields: 

   

  2

2

.

T
i i i

i

T
i i i T

t e e

a d d

d d q q




  

  


 

 (13) 

After obtaining d and , new incremental displacements 

and load level are: 
1i i id d d     (14) 
1i i i       (15) 

 

 
 

Figure 1. The linearized arc-length method [2] 

 

IV. THE PREDICTOR SOLUTION 

The predictor step will indicate the direction of the first 

attempt to find the equilibrium path, and therefore its 

importance in the whole iterative process. The most 

popular idea is to use the forward-Euler scheme to obtain 

an expression for predictor. According to Figure 2 we have: 
1 1

t ed K q    (16) 

  00 λ,d

2

1

0

3



0d

1Δd

2Δd

3Δd

0δd 1δd 2δd

1δd

2δd

 11 λ,d

 22 λ,d

 33 λ,d

l

l

l
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where, Kt is the tangent stiffness matrix at the beginning of 

the increment. The superscript of the incremental 

displacement vector d stands for the number of the 

iteration of the predictor step. The incremental external 

force Δqe of Equation (16) can be expressed as: 
1

e eq q    (17) 

Inserting Equation (17) into Equation (16) yields: 
1 1 1

t ed K q     (18) 

Recalling definition of δdt the Equation (11) and Equation 

(18) can be re-expressed as: 
1 1 0. td d     (19) 

The previous equation has to be constrained by the 

incremental length l. Hence substituting Equation (19) 

into Equation (5), and solving for , finally yields: 

 

1

0 0 2
T

T
t t e e

l

d d q q



  


  



 (20) 

Because of the plus and minus sign in Equation (20), 

two different predictors are possible. There are several 

criteria to predict the continuation direction of the 

equilibrium path, i.e., to decide the sign of Δλ1. This may 

seem a trivial choice, but lays in the center of the method 

and an erroneous selection would lead to unwanted results, 

such as example, doubling back on the equilibrium path. 

The three most popular alternatives to determine if Δλ1 is 

positive or negative are given in the next sections. 

 

 
 

Figure 2. Forward-Euler incremental procedure [2] 

 

V. THE SIGN OF PREDICTOR SOLUTIN 

There are three methods to determine the sign of 

predictor. 

 

A. To Follow the Sign of det(Kt) 

    1sgn sgn det tK   (21) 

where, Kt is the tangent stiffness matrix at the beginning of 

the increment, i.e. when Δλ1 is computed.  

This is the most popular and widely used criterion, 

which was originally introduced by Crisfield in 1980 [10], 

and works well in the presence of limit points. However, 

in the presence of bifurcations, it fails in most cases. 

As it will be seen in the next section, through a simple 

example, the sign of the det(Kt) oscillates from negative to 

positive around the bifurcation point, and therefore is 

unable to follow the equilibrium path [12, 13]. This 

criterion has been shown with pr = 1 in section of 

numerical examples. 

 

B. To Follow the Sign of the Predictor Work Increment 

   1 0sgn sgn
T

t ed q  
   

 
 (22) 

where, δdt
0 is the current tangential solution defined in 

Equation (11) at the beginning of the incremental and qe is 

the external load vector. According to Souza and Feng 

[14], this criterion is insensitive to bifurcations and can 

continue to trace an equilibrium path after passing a 

bifurcation point. 

However, this criterion proves ineffective in the 

descending branch of load-deflection curve in ‘snap-back’ 

problems, where the predicted positive ‘slope’ will 

provoke a ‘back tracing’ load increase. In other words, the 

scheme doubles back on its track after passing a turning 

point. Some authors have proposed switching between the 

two previous criteria to overcome their ill behavior at the 

presence of limit and turning points. However, this 

represents an extra computational cost. This criteria has 

been shown with pr = 2 in section of numerical examples. 

 

C. To Follow the Displacements Internal Product 

   1 0 0sgn sgn .
T

td d  
   

 
 (23) 

where, Δd0 is the previous converged incremental 

displacement and δdt
0, the current tangential solution 

defined in Equation (11). 

Introduced by Feng et al in 1996 [15], this criterion is 

insensitive to limit points, turning points and bifurcation 

points. Its key point is the fact that Δd0 carries with it 

information about the history of the current equilibrium 

path. Its only limitation is the need for a sufficiently small 

value than Δd0. However, Feng has claimed that this 

limitation is already imposed by the Newton-Raphson 

algorithm and in practice, the required size of Δd0 for an 

accurate direction prediction would always be greater than 

the necessary convergence radius of the N-R scheme.  

Nevertheless, in Feng’s work, there is no indication for 

the maximum size of Δd0 required for the criterion to work 

properly. Furthermore, there is no information of the very 

first incremental Δd0 and therefore the sign of the very first 

predictor step cannot be determined by Equation (23). A 

solution would involve the use of the det(Kt) principle and 

then switch to the proposed criterion. However, it is 

expected that if the early structure is in stable 

configuration, the very first predictor load level Δλ1 will be 

positive. This criteria has been shown with pr = 3 in 

section of numerical examples. 

 
eq

 
1Δd  

2Δd

 
eΔq

 
eΔq
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VI. THE SCALING PARAMETTER () 

The constraint Equation (5), the base of the arc-length 

method, reads: 

   
2

2 2 0
T

i i i i T
e ea d d q q l         (24) 

where,  determines influence of load and displacement 

control in the behavior of the arc-length method. So, for 

example if ψ→0, displacement control likes conduct and 

if ψ→∞, load control likes perform. 

Moreover, it can be said [16] load and displacement 

control methods are particular cases of the arc-length 

method (Figure 3). 

 

 
 

Figure 3. Different path following techniques [2] 

 

The main purpose of  in Equation (24) is to give scale 

between the load and displacement terms, when for 

example, using great force values for small displacement 

resultants. The last is very likely to happen in analysis 

using real values, when the stiffness of the structure 

elements are high and therefore, large forces are required 

to obtain small displacements (e.g. 1e10 Newton to get 

1mm displacement). In this case, if   = 1, the force term 

Δλ2ψ2qe
Tqe in the constraint Equation (24) would tend to 

infinite if compared to the displacement term ΔdTΔd. 

Therefore, the arc-length method would behave 

similarly to the load control and loosing ability to 

overcome limit points. However, in practice, it seems that 

the displacement term, when Δλ2ψ2qe
Tqe→0, has little 

effect, and the arc-length method still is capable to pass the 

bifurcation, limit, and turning points. As a result many 

authors [9, 13, 17] have advocated the use of   = 0. 

Authors like Al-Rasby [18], and Schweiyerhof and 

Wriggers [11] have already addressed the issue of defining 

a proper scaling between displacement and load 

components. 

 

VII. CONVERGENCE CRITERION 

In an effective incremental-iterative method, some 

criteria should be pre-determined for termination or 

continuation of iterations. If a tight tolerance is selected, 

excessive computation, effort is spent on unnecessary 

accuracy. On the other hand, if the tolerance is set too 

loose, equilibrium error may be excessive and inaccurate 

solutions can be resulted. 

Further to this, the question of whether the equilibrium 

tolerance should be set on the unbalanced forces or 

displacements is debatable matter. Through a number of 

nonlinear analyses by the authors, it was found that a 

slightly loose tolerance imposed on both the displacement 

and force error is preferable to a tight tolerance for either 

the displacement or the force error norm. 

For this purpose, 0.1% equilibrium error is allowed for 

each of the maximum unbalanced displacement and force 

norms. Equilibrium is only assumed when both of the 

equilibrium checks are satisfied. Mathematically, the 

convergence criteria for force and displacement are 

expressed respectively as: 

r d

f d






 (25) 

where, r, f, d are the accumulated residuum force, external 

load and displacement vectors respectively,  is the 

tolerance for equilibrium condition and is set to 0.1% for 

the present study. 

 

VIII. NUMERICAL EXAMPLES 

The numerical examples were chosen to allow 

comparison between the following purposes: 

1- The criteria included in section V to determine the sign 

of the predictor step in the arc-length method 

2- The importance influences of increasing of incremental 

length (l) to get fast convergence 

3- Comparison between new and previous constraint 

equations to get accuracy for the arc-length control method 

4- Investigated numerically the scaling parameter ψ 

 

A. Example 1 - The Basic Two Bar Asymmetric System 

The classical problem of Figure 4 with two truss 

elements was analyzed. This example has two limit points 

on equilibrium path. Figure 5 shows load-displacement 

curve obtained via the implemented linearized arc-length 

method with different incremental length (l) and criteria 

to determine the sign of the predictor step. The comparison 

between curves is obtained with criteria in section V show 

that all three of criteria have ability to overcome limit 

point. In other effort to investigate effect of changing value 

of initial, minimum and maximum incremental length (l) 

to draw load-disp. response diagram in arc-length method, 

has been shown in Table 1. 

The results in Table 1 shows that increase of 

incremental length (l) causes number of points to draw 

curve can be reduced. According to Table 2, the accuracy 

of convergence is reduced. To overcome this problem, a 

new constraint equation is suggested. The Table 2 can be 

considered to compare the previous and new constraint 

Equation (5) and Equation (26). As it can be seen from the 

results of the Table 2, the accuracy of convergence with 

the new constraint equation is increased. It is noticeable 

that the values of Table 2 are used for the values of the last 

row in Table 1. 

   
2

2
2 2 0

T
i i i i T

e ea d d q q l  
       
 

 (26) 

0

1d 0

2d

0

1

0

2

l


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The choice of a random value for the scaling parameter 

ψ can lead to the linearized arc-length method to yield 

disappointing results. If the scaling parameter ψ is set to 1, 

the force term Δλ2ψ2qe
Tqe in the constraint Equation (5) 

tends to infinite if compared to the displacement term 

ΔdTΔd. 
 

x

1005

P

995

1
0

0
0


45

y

1 3

2

 
 

Figure 4. Two bar asymmetric structure 

 

 
 

Figure 5. Load-displacement response diagram with Equation (5) 

 

 
 

Figure 6. Load-displacement response diagram with Equation (26) 

 

Table 1. Comparison the effect of changing incremental length (l) 
 

The total number 

of points on the path 

Maximum  

incremental  

length 

Minimum  

incremental  

length 

Initial  

incremental  

length 

114 20 5 10 

58 40 10 20 

39 60 15 30 

30 80 20 40 

Table 2. Comparison the effect of constraint Equations (5) and (26) 
 

Constraint 

Equation (26) 

constraint  

Equation (5) 

Number 

of iteration 

Point on 

the path 

5.1699×10-26 2.2737×10-13 1 1 

1.8612×10-24 -1.3642×10-12 1 2 

2.0680×10-25 4.5475×10-13 1 3 …
 

…
 

…
 

…
 

0 0 1 28 

3.3087×10-24 -1.8190×10-12 1 29 

0 0 1 30 

 

Furthermore, the length of the predictor step is reduced 

and the more number of increments would be needed to 

draw the same curve. In other words, the arc-length 

method starts to show a load control-like behavior. On the 

other hand, if the scaling parameter ψ is set to 0, the size 

of the predictor step is kept in reasonable values and the 

lower increments than previous are needed to draw the 

entire equilibrium path. Additionally, a displacement 

control-like behavior can be observed from the constant 

displacement increment size. 

However, at least in the analyzed truss structures, the 

arc-length control method with ψ = 0 is capable to 

overcome all the special points, but only if the criterion for 

determining the sign of the predictor step yields the right 

direction. 

 

B. Example 2 - The Basic Two Bar Symmetric System 

In this example, the basic two bars symmetric system 

with the angle between the trusses and the horizontal line 

is increased to 68 (Figure 7). This system has two 

bifurcation and two limit points that appear in the 

equilibrium path. In the Figures 8, 9 and 10, it can be 

observed how the three studied criteria are affected by the 

presence of the limit points. The criteria 2 and 3 are not 

influenced by the limit points and therefore the arc-length 

method continues drawing the entire primary path. 
 

x

400

P

400

1
0
0
0

68y

1 3

2

 
 

Figure 7. Two bar symmetric structure with augmented angle [2] 

 

The arc-length method, using the criterion 1, fails to 

overcome the bifurcation point. The problem consist in 

that when the sign of det(Kt) changes to negative, the 

predictor step points downwards, and the iterations 

converge in the equilibrium path that has already been 

drawn. Therefore, at least in this case, the arc-length 

method oscillates around a bifurcation point until the 

maximum number of increments is completed. 
1i i

td K r    (27) 
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Figure 8. Load-displacement response diagram with pr = 1 

 

 
 

Figure 9. Load-displacement response diagram with pr = 2 

 

 
 

Figure 10. Load-displacement response diagram with pr = 3 

 

In Table 3 and Table 4, the results of comparing the 

effect of changing incremental length (l) and comparing 

the effect of constraint Equation (5) and Equation (26) in 

implementing the arc-length method are presented. Also in 

this case it can be proved that the increase of incremental 

length (l) causes the points to draw curve be reduced and 

the new constraint equation causes the accuracy of 

convergence be increased. It is noticeable that the load-

displacement curve will be obtained via the values of 

different incremental length (l) in Table 3 and using 

Equations (5) and (26) as the same Figures 9 and 10. The 

values of Table 4 are used for the values of the third row 

in Table 3. 
 

Table 3. Comparison the effect of changing incremental length (l) 
 

The total number 

of points on the path 

Maximum  

incremental  

length 

Minimum  

incremental  

length 

Initial  

incremental  

length 

222 20 5 10 

111 40 10 20 

74 60 15 30 

56 80 20 40 

 

Table 4. Comparison the effect of constraint Equations (5) and (26) 
 

Constraint 

Equation (26) 

Constraint 

Equation (5) 

Number of 

iteration 
Point on the path 

5.1699×10-26 -2.2737×10-13 1 1 

5.1699×10-26 2.2737×10-13 1 2 

0 0 1 3 …
 

…
 

…
 

…
 

5.1699×10-26 -2.2737×10-13 1 72 

0 0 1 73 

5.1699×10-26 -2.2737×10-13 1 74 

 

C. Example 3 - Six Bar Symmetric System 

Until now, the behavior of the arc-length method using 

the criteria 1, 2 and 3 has been tested in the presence of 

bifurcation and limit points. With the aid of the symmetric 

truss structure of Figure 11, the performance of the criteria 

on the incidence of turning points will be examined. The 

equilibrium path of the truss structure of Figure 11 has 

eight limit points, two turning points, and at least two 

critical points. Figures 12 to 14 show load-displacement 

response diagram of the structure in Figure 11. As in the 

previous numerical experiment, criterion 1 fails to predict 

the direction of the predictor step, and the oscillation of the 

arc-length method around bifurcation point occurs again. 
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Figure 11. Six bar symmetric structure [2] 

 

All criteria change the sign of the predictor step when 

passing a limit point. However, in this case, criterion 2 also 

fails to predict the direction of the next increment when 

passing a turning point. The sign of the work increment 

expression 0( )T
t ed q  changes after passing said point, as 

shown in Figure 13. The arc-length control method starts 

to oscillate around the turning point. Finally, from the three 

studied criteria, the third is the only one insensible to the 

presence of bifurcation and turning points. Therefore, it is 

capable to draw complete equilibrium curve, as shown in 

Figure 14. 

   , 0i er d q d q     (28) 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 17, Vol. 5, No. 4, Dec. 2013 

 159 

 
 

Figure 12. Load-displacement response diagram with pr = 1 

 

 
 

Figure 13. Load-displacement response diagram with pr = 2 

 

 
 

Figure 14. Load-displacement response diagram with pr = 3 

 

Again to compare the effect of changing incremental 

length (l) and to compare the effect of constraint 

Equation (5) and Equation (26), Table 5 and Table 6 are 

presented respectively. It is noticeable that the                       

load-displacement curve will be obtained via the values of 

different incremental length (l) in Table 5 and using 

Equations (5) and (26) as the same Figure 14 if the third 

criterion is used. The values of Table 6 are used for the 

values of the end row in Table 5. 

 

Table 5. Comparison the effect of changing incremental length (l) 
 

The total number 

of points on the path 

Maximum  

incremental  

length 

Minimum  

incremental  

length 

Initial  

incremental  

length 

565 20 5 10 

377 40 10 20 

189 60 15 30 

162 70 20 40 

 
Table 6. Comparison the effect of constraint Equations (5) and (26) 

 

Constraint 

Equation (26) 

Constraint 

Equation (5) 

Number of 

iteration 

Point on 

the path 

2.0680×10-25 -4.5475×10-13 1 1 

0 0 1 2 

0 -1.8190×10-12 1 3 …
 

…
 

…
 

…
 

8.2718×10-25 9.0949×10-13 1 160 

7.4446×10-24 0 1 161 

0 -9.0949×10-13 1 162 

 

IX. CONCLUSIONS 

By following the nonlinear equilibrium path, it is 

possible to understand the phenomenon of collapse or 

buckling or the total bearing capacity of structures. 

Different methods, which are incremental iterative 

procedure such as Newton-Raphson, are usually used to 

solve structures with non-linear behavior. However, those 

methods diverge when reach to a limit point. Arc-length 

method is one of the most appropriate and useful method 

to draw full path of the load-displacement. The arc-length 

method overcame the limit points when using any of the 

three studied criteria. 

While using the determinant of the tangential stiffness 

matrix, to determine sign of predictor step, the arc-length 

method oscillated around the bifurcation points. When 

using the principle of the work increment, to determine the 

sign of the predictor step, the solution fluctuated about the 

turning points. However, it did not respond to bifurcations 

and it was able to draw the entire unstable post-bifurcation 

path. The criterion of the internal product of the 

displacement vectors was insensible to bifurcation and 

turning points, at least in the analyzed structures.  

Therefore, when using such criterion, arc-length 

method was capable to draw the entire primary equilibrium 

path. In this method, choosing the proper size of the 

incremental length (l) can be caused to get fast 

convergence or divergence. In this research, the increasing 

of the incremental length (l) causes to get fast 

convergence but the accuracy will be reduced. To 

overcome this problem a new constraint equation is 

suggested. The new constraint equation causes the 

accuracy be increased. 
The choice of a proper scaling parameter ψ 

demonstrated to have great influence on the performance 

of the arc-length method. In the analyzed problems, the use 

of ψ = 0 produced the best the performance of the method 

regarding convergence and computing time. 

 

NOMENCLATURES 

Kt: Tangent stiffness matrix 

qe: External force vector 

qi: Internal force vector 
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r: Residuum or out of balance vector 

s: Arc length 

u: Displacement field vector 

d : Iterative nodal displacement change vector 

d : Iterative nodal displacement change 

td : Iterative nodal tangential displacement change 

0
td : Current tangential solution 

Δd: Incremental displacement nodal vector 

Δd0: Previous converged incremental displacement 

Δd1: Incremental displacement nodal vector for the 

predictor step 

Δl: Incremental length 

: scaling parameter for the arc-length constraint 
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