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Abstract- The issue of an effective assessment of the 

technical condition monitoring of the electrical structure of 

the power transformer windings originated the research 

work discussed in this paper. Also, a new method has been 

presented based on a mathematical model to identify the 

parameters of power transformer windings including     

self-inductance, resistance, ground capacitance, inter-turn 

capacitance on the basis of the measurement of Frequency 

Response Analysis (FRA) and using hybrid Meyer 

Wavelet Transform (MWT) and intelligent Bacterial 

Swarming Algorithms (BSA) and Particle Swarm 

Optimization algorithm (PSO). FRA experimental data, 

which have been measured in power laboratories, were 

used as reference frequency responses for analysis of the 

accuracy of identification of these methods. The results of 

this analysis demonstrate their strength in more accurate 

calculation of parameters of power transformer winding. 
 

Keywords: Power Transformers, Frequency Response 

Analysis, Travelling Wave Model, Discrete Meyer 

Wavelet Transform, Bacterial Swarm Algorithm. 
 

I. INTRODUCTION 
During recent years, Frequency Response Analysis 

(FRA) has been recognized as the most reliable condition 
monitoring technique for transformer winding 
displacement and deformation assessment. It is established 
upon the fact that the shape of a winding frequency 
response at high frequencies is associated with winding 
geometry. The appearance of clear shifts in resonance 
frequencies or new resonant points on a response may 
characterize faulty conditions of windings [1, 2].  

Therefore, FRA is very essential to identify any minor 
winding deformation as soon as possible and take a proper 
asset management decision to avoid disastrous failures. 
FRA is an offline test [3, 4]. Practical experiences, as well 
as scientific investigations, show that currently no other 
diagnostic test method can deliver such a wide range of 
reliable information about the mechanical status of a 
transformer’s active part (core-coil assembly) [4]. 

In most cases, FRA is used in the low frequency range 

of up to 3 MHz however, it has been suggested in [5] that 

at a higher frequency range the frequency response also 

contains useful information. Therefore, some recent works 

have increased the frequency range to 10 MHz yet, they 

are simulated based on the lumped parameter model, 

which is easier to build and requires less computation time, 

but is less accurate [5]. There are two ways for making 

frequency response analysis (FRA) measurements, Sweep 

Frequency Response Analysis (SFRA) and Low Voltage 

Impulse method (LVI) [6]. 

In the past a few years, development of evolutionary 

algorithms received great attention in the computational 

intelligence community worldwide [7]. Evolutionary 

algorithms such as Gene Expression Programming (GEP) 

[8], Particle Swarm Optimizer (PSO) [9], Artificially 

Neural Network (ANN) [10-12], etc., were utilized to 

identify parameters of transformer winding models using 

FRA measurements. During a learning process, an 

evolutionary algorithm optimizes model parameters in 

order to reduce the difference between real FRA 

measurements and corresponding simulations of winding 

models [1]. One of the advantages of this model-based 

approach is that evolutionary algorithms require only 

approximate range of possible values for each parameter 

as initial estimates for learning.  

This paper presents a novel approach for winding 

parameter identification of power transformers based on 

reference FRA measurements with hybrid WT and BSA 

and compare with PSO. The travelling wave theory 

principle is applied to establish the equivalent circuit and 

mathematical model of transformer winding, which is used 

for model-based parameter identification. The paper is 

organized as follows. Section II describes a mathematical 

model of transformer winding, and then in Section III the 

reference transfer function for transformer winding under 

study will be described. 
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Bacterial swarm algorithm processes for transformer 

winding parameter identification based on frequency 

response analysis are introduced in Section IV. In       

Section V the model based on identification of transformer 

winding parameters with particle swarm optimization 

algorithm are shown. Subsequently, the simulation results 

and comparison are shown in Section VI. Finally, 

conclusions are given in Section VII.  

 

II. MATHEMATICAL MODEL OF 

TRANSFORMER WINDING 

A transformer is one of the most complex electrical 

elements in a substation. For power flow studies or even 

short circuit studies, its complex nature is often trivialized 

as an inductance. However, for the purpose of diagnostics, 

where the response of the windings is measured over a 

wide range of frequencies, such simplifications cannot be 

made and the electrical parameters must be estimated 

based on the geometry and materials comprising the 

windings. In the area of diagnostic testing, the transformer 

has often been modelled using lumped circuits. 

The transmission line model (travelling wave) is a 

natural extension of the lumped model [13]. For a 

transformer winding containing more than one disc, each 

disc in the literature as the smallest discrimination is 

considered and also by a set of electrical lumped elements 

represented. In order to undertake a feasibility study, using 

the travelling wave theory for further research, only 

uniform transformer winding with the same values of 

parameters per unit length is to be considered. 

Derivation of a transfer function in the notations of 

Figures 1 and 2 for the parameters per unit length of 

winding conductor is based upon the Telegrapher’s 

equations for loss transmission lines which are expressed 

as follows[14, 15]: 
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Upon these fundamental dependencies, the charging 

current for each element of winding conductor length ΔX 

of the nth turn, flowing to ground due to external 

capacitance and insulation conductivity, is described as 

follows: 
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The charging current flowing from the nth turn to the         

(n-1)th one is: 

1
1

( )
( )n n

sn n n

n
n

U U
i cs x U U xg

t

U
cs x U xg

t




 
      




    



 (4) 

and to the (n-1)th turn is: 
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The sum of Equations (4) and (5) gives total inter-turn 

current per unit conductor length as follows: 
2

2
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where, Δu is the voltage difference between adjacent turns, 

Δ2u denotes the difference of the Δu between successive 

turns. Since only inter-turn relations are considered than 

one turn length α of conductor is assumed to be of interest: 

x a   (7) 

In addition, the second difference of voltage can be 

rewritten in a differential form:  
2 2
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Substituting Equation (8) into the sum of Equations (3) 

and (6), the space derivative of the total current’s decrease 

in the nth turn is obtained as: 
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If the nth turn having self-inductance λ per unit length, 

were separated from the rest of the winding, the voltage 

induced by the current in it can be expressed as: 

n
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i
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The two adjacent turns coupled by the mutual 

inductance μ per unit length induce a voltage in the nth turn 

as follows: 
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Thus, as stated in, due to the mutual inductances the 

induced voltages proportional to in will be produced in the 

nth turn by each succeeding turn and, hence, it can be 

collected together using Equations (10) and (11), which 

leads to: 
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where, l is the self-inductance of winding per unit length, 

derived by the total inductive effects between all turns or 

simply it is the self-inductance of the entire winding 

divided by its total length. 

Considering inter-turn relationships second difference 

of current has a form of second order space derivative we 

get: 
2 2

2 2 2
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In addition, that is related to an influence of the 

immediately adjacent turns, because the induced effects of 

another turns have already been included in Equation (12). 

The total voltage in the nth turn is equal to decrease nu  

which, using Equations (11) and (12), becomes: 
3
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and the voltage space derivative along the winding, with 

aid of Equation (13), transforms into: 
3

2
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x t t x
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Thus, the Equations (9) and (15) in a detail describe the 

propagation of wave signal along uniform transformer 

winding. 

 

 
 

Figure 1. Continuous parameter model of transformer winding [14] 

 

III. REFERENCE TRANSFER FUNCTION OF 

TRANSFORMER WINDING 

In order to obtain a transfer function of transformer 

winding, Equations (9) and (15) are to be considered. 

Consequently, with a purpose of further processing 

simplification, the last term of Equation (15) is to be 

neglected within practical accuracy tolerance, since the 

mutual inductance µ of the adjacent turns is much less than 

self-inductance l which already includes mutual 

inductances itself. The Laplace transform is used for 

converting the expressions to the frequency domain. Thus, 

with the zero initial conditions we have: 

( 0, ) 0   ,    ( 0, ) 0i t x u t x     (16) 

The Laplace transform of the space derivatives would be: 
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where, Z, Y, and Ys are the impedance and admittance of 

winding and admittance of insulation per unit length 

respectively, and: 

S s

Z ls r

Y cs G

Y g S g

 


 
  

 (19) 

Thus, the mathematical model of transformer winding 

is similar to the model of the uniform homogenous 

transmission line and has a solution in a form: 
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where, the propagation constant is: 

21 s

ZY

ZY a
 


 (22) 

And the surge (characteristic) impedance of the 

transformer winding is: 

2

0

(1 )sZY a Z
Z

Y


  (23) 

Only the impedance of measurement coaxial cable        

Zinp = 50 Ω being serially incorporated into the model has 

represented the analysis of the proposed equivalent circuit 

model of transformer winding at FRA testing shows that 

measurement chain of multi-frequency input signal. 

However, at FRA testing, the input signal is measured 

directly at the bushing terminals of a transformer with an 

additional measurement cable connected in parallel to the 

first signal transmitted cable, in order to reduce the 

influence of measurement chains. 
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d

U(t,0)
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Figure 2. Equivalent circuit of transformer winding at FRA testing [14] 

 

Thus, the second parallel cable impedance has to be 

included into the equivalent circuit of the transformer 

winding. In addition, the capacitance with respect to tank 

ground Cb of the high voltage input bushing terminal and 

the impedance Zout of output signal measurement chain are 

included. Consequently, equivalent circuit of transformer 

winding being refined is illustrated in Figure 2 and the 

boundary conditions can be expressed by the following 

equations in the Laplace form: 
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inp inp

U s
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Y Z

 
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( , ) ( , )outU s d Z I s d  (26) 

2
inp b

inp

Y sC
Z

   (27) 

Equation (27) denotes the admittance at the input of the 

winding during FRA testing. Paying attention that the 

transfer function of transformer winding is to be succeeded 

in a form as: 
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The Equations (20) and (21) with boundary conditions 

suitable must be solved. Consequently, the transfer 

function of transformer winding becomes: 

0
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inp out
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Using the derived Equation (29) for the transfer 

function of transformer winding with substitution s = jω it 

is possible to produce the frequency response of 

transformer winding. 

 

IV. BACTERIAL SWARM ALGORITHM  

This algorithm is used in this study to perform 

intelligent optimization with the purpose to identify 

transformer winding model parameters. BSA has 

demonstrated a superior performance in comparison with 

some popularly used algorithms, such as PSO and Fast 

Evolutionary Programming. In summary, a BSA process 

can be expressed briefly in the form of a sequence of the 

following operations [7]: 

1- Random generation of the initial population 

2- Performing chemo-tactic process for fitness evaluation 

of each bacterium in the population 

3- Performing the ‘group-based attraction and dispersion’ 

process 

4- Repeating steps 2 to 4 until a termination criterion is met 

5- Presentation of the best bacterium in the population as 

the BSA output 

 

A. Bacterial Foraging Algorithm 

Bacterial foraging algorithms are a new class of 

stochastic global search techniques [16]. Pasino first 

presented the BF algorithm in 2002. The idea in this 

algorithm was adopted from biological and physical living 

behavior of E coli bacteria existing in the human intestine. 

In principle, bacteria try to reach the nutrients, to avoid 

noxious materials, and to find a way to exit the neutral and 

noxious nutrient environment [17]. 

The main difference between BSA and BFA is the 

absence of the reproduction process in BSA. All bacteria 

are kept in the population with only their positions updated 

in the search domain according to their fitness values. The 

BSA model executes a combination of both chemo-tactic 

and “group-based attraction and dispersion” processes [7]. 

BSA process is generally expressed in the [18-21]. 

 

B. Parameter Identification with BSA 

The model-based learning approach is based on 

searching of the optimal model parameters by minimizing 

the difference, i.e. fitness, between reference frequency 

responses and simulated model outputs. It is achieved by 

measuring the errors between the original responses and 

the model outputs. Therefore, for each individual 

(bacterium) of a population in BSA, its total fitness value 

is given as follows: 

0

1

min ( ) ( )
S

j

H j H j Wj 


   (30) 

where, H0(ωj) and H0(ωj)ϵR1 are the reference and 
simulated with the identified parameters frequency 
responses at frequency ωj, j=1, 2, ..., s, where s is number 
of frequency points involved in BSA learning process and 
Wj is the relative weight of the jth point. 

Due to iterative nature of evolutionary algorithms, 
processing a large number of data points can greatly slow 
down a learning process. In the case of FRA, frequency 
responses are characterized mainly by resonant and             
anti-resonance frequencies and corresponding magnitude 
values. Therefore, as proposed in [22], the dimension of 
processed FRA data can be reduced by selection of points 
of resonance and anti-resonance and its vicinities for more 
speedy analysis, which are weighted accordingly. The 
following steps are performed for the core parameter 
identification in this study. 
• Experimental FRA data or simulation data derived from 
a transformer-winding model with predefined parameters 
are used as reference frequency responses. 
• Reference response points in a frequency range of 
interest are selected to create a reference dataset, being 
employed as training targets for BSA learning. 
• The initial search space for the identified parameters is 
established based on approximate estimations. 
• BSA learning is performed, in each step of which the 
predefined training dataset is compared with the 
corresponding values of the simulated frequency responses 
at the same frequency points. The simulated frequency 
responses are generated using the established transformer 
core model with the parameters obtained during the BSA 
learning process. 

The BSA learning parameters are selected based on the 
previous study on bacterial foraging optimization and 
numerous trials with various BSA parameters. The 
parameters are listed in Table 1. 

 

Table 1. The BSA parameters 
 

Value Notation Parameter 

90 p dimension of search space 

2 s The number of bacteria 

5 Nc No. of chemo-tactic steps per bacteria lifetime 

6 Ns Swim length limit when bacteria is on a gradient 

20 Nre No. of iteration steps 

2 Ned The number of elimination-dispersal events 

1 Sr Number of bacteria reproductions (splits) per generation 

0.025 Ped Probability for attraction 

0.001 Cinit Initial step length 

 

V. FOUNDATION BY USING PSO METHOD 

Particle Swarm Optimization (PSO) is a population 
based on computational technique inspired from the 
simulation of social behavior of flock of birds. PSO 
originally designed and developed by Eberhart and 
Kennedy [23, 24]. A newer version was introduced in 
[1998] by incorporating inertia weight. In the group of the 
particles, the optimization problem is the same answers 
and they are scattered randomly in the search space. The 
position of these particles, which refers to their swarms, is 
collected from one another. The particles positions are 
updated by using their experiences and the experiences of 
neighboring particles. 
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 However, PSO tries to find the optimal solution to the 

problem by moving the particles and evaluating the fitness 

of the new position. The particle velocity vector [25] does 

this update, i position vector and velocity vector of ith 

particle in a d-dimensional search space, are expressed as 

follows [26, 27]: 

 1 2, ,...,i i i idX X X X  (31) 

 1 2, ,...,i i i idV v v v  (32) 

The best previous position of a particle is recorded and 

displayed, based on the evaluation function value as 

follows [28]: 

 1 2, ,...,best i i idp p p p  (33) 

If the g the particle has the best position in swarm in 

comparison with other particles then the situation is shown 

below: 

1 2( , ,..., )best best g g g gdg p p p p   (34) 

1k k
best bestg g    (35) 

PSO process is generally expressed in the [29-31]. 

 

A. Parameter Identification with PSO 

In order to compare the performance between BSA and 

an evolutionary algorithm widely utilized for parameter 

identification purposes, PSO is employed to conduct 

parameter identification of the equivalent lumped 

parameter model using the same reference responses and 

fitness function. Due to the stochastic nature of both the 

algorithms, BSA and PSO, initial populations of 

individuals (bacteria) are generated in random order using 

the same search space limits, specified in Section IV.B. 

The PSO parameters are chosen based on various 

preliminary trials and listed in Table 2.  

 
Table 2. PSO parameters 

 

Value Notation Parameter 

0.4-1 W Inertia weight parameter 

2 nvar The number of Optimized Parameter 

5 C1 Cognitive coefficient 

2 C2 Social coefficient 

0-1 Rand1,2 Random number 

100 itermax The maximum number of iterations 

 

VI. SIMULATION RESULT 

In this section, simulations has been ran on the high 

voltage winding of a transformer with the specifications 

mentioned in Table 3 and based on the theory of 

transmitting wave propagation and the reference transfer 

function of transformer winding has been shown in   

Figures 3 and 4 based on amplitude and phase. The 

proportion of an output voltage to an input signal is used 

to measure frequency responses. 

Finally, as Figure 5 shows, transformer reference 

transfer function is resolved using discrete Meyer wavelet 

transform through passing low-pass filter and calculating 

approximate signal and passing high-pass filter and 

calculating details signal. Having applied this range to the 

intelligent Bacterial Swarming Algorithm, the parameters 

of power transformer winding are estimated at the best 

condition and the resultant transfer functions are compared 

with the Particle Swarm Optimization algorithm. The test 

object is a disc-type winding consisting of 46 discs with 6 

turns in each discs. 

 
Table 3. Transformer parameters 

 

Parameter Symbol Value 

Transformer Power  (KVA) S 3150 

Transformer ratio (KV) N2/N1 20/3.3 

Vector Group - DYn5 

Number of disks Nd 52 

Number of turns per a disk Nt 17 

Self-inductance, µH/m l 4.5247 

Resistance W/m r 0.01217 

Ground capacitance, PF/m C 1.06818 

Inter-turn capacitance, PF/m Cs 0.10883 

Bushing capacitance, PF/m Cb 500 

Ground conductivity, nSi/m G 0.479 

Inter-turn conductivity, µSi/m g 31.102 

Average length of turn, m a 3.44 

Total length of winding, m d 3041 

 

 
 

Figure 3. The reference transfer functions of transformer winding 

 

 
 

Figure 4. Phase of reference transfer function of transformer winding 

 

The reason for using the discrete Meyer wavelet in 

simulations is that it supports compression. In the sense, 

which that has value only in a finite interval and 

disappeared outside the interval, this property greatly helps 

to get responses close to the experimental ones.  
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(a) 
 

 
 

(b) 
 

Figure 5. The magnitudes of resolved frequency transfer function of 

Figure 3 using discrete Meyer wavelet transform, (a) Approximate 

coefficient, (b) Detail coefficient 

 

A. Parameter Estimation of Transformer Winding 

Model with BSA and PSO 

The aim of this task is to identify accurately 

transformer winding parameters using a detection theory 

based on a mathematical model described in Section II. In 

order to identify the winding parameters, an evolutionary 

algorithm called bacterial swarming algorithm was used 

then the same activity was carried out for the intelligent 

method of particle swarm optimization algorithm, the final 

estimated amounts and their resultant output transfer 

function were compared together and the conclusion was 

reached. The described flowchart of this method has been 

presented in Figure 6. 

Table 4 in the Appendix summarizes the reference 

parameter and the identified parameter values with BSA 

and PSO, which given the end of article. The table contains 

the results of one successful run with BSA and its 

deviation from the reference, the analysis of which shows 

negligible difference between the identified parameters. 

Considering resistance parameters, BSA provides its 

accurate identification from the corresponding reference 

values. The large deviation of the initial estimation of l, r 

from the reference caused failure to repeat all resonance 

frequencies when using the model with PSO. This results 

in clear shifts to the left of the resonant points with regard 

to the reference frequency responses in Figures 7 and 8. As 

seen from the Table 4, the deviation of the PSO identified 

parameters becomes greater than obtained values with 

BSA. Nevertheless, despite of slight deviation from the 

reference values, the utilization of estimated parameters as 

a search basis for BSA parameter identification essentially 

improves the model performance as illustrated in       

Figures 7 and 8. 

The large deviation of the initial estimation of l, r from 

the reference in model with PSO caused shifts to the right 

of the resonant points with regard to references frequency 

responses in Figures 7 and 8. The difference in the 

identified results can be explained by the fact that the 

algorithms are generally guided by the fitness function, 

which computes only the total deviation of the model 

outputs from the reference. 

Therefore, due to different learning principles, BSA 

and PSO identify diverse parameters, despite of achieving 

a close resemblance with the reference. In summary, 

considering more accurate parameter identification using 

BSA in comparison with the reference values, it can be 

assumed that BSA is more appropriate for the given 

optimization case. 
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methods
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estimation.

end

Receiving initial 

parameters of a 

transformer 

Applying to the used intelligent 

algorithms

Calculation of the reference 
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Meyer wavelet transform

  
 

Figure 6. Flow chart describing the methodology used in the analysis 

 

 
 

Figure 7. Comparison of the transfer function magnitude frequency 

response, identified with PSO, BSA and reference 
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Figure 8. Comparison of the transfer function phase’s frequency 

response, identified with PSO, BSA and reference 

 

VII. CONCLUSIONS 

In this paper, in order to identify and estimate the 

model parameters of transformer windings based on 

frequency response analysis, Bacterial Swarming Analysis 

(BSA) and Particle Swarm Optimization (PSO) algorithms 

using the travelling wave theory were used. During the 

learning process, these evolutionary algorithms optimize 

the model parameters to decrease the difference between 

the corresponding real and simulated measurements of 

FRA of winding models. Comparing with the previously 

developed methods for transformer winding parameters 

estimation [1, 3, 7], the proposed approach establishes and 

utilizes the frequency dependent core model, which has a 

simple form. 

The simulation results show that in the PSO method, 

parameter setting based on the nature and type of the 

problem studied is an important factor in accurate and 

efficient attainment of optimum answer. Although the PSO 

method using time variant inertial parameter can quickly 

lead to an acceptable answer, but due to its diversity at the 

end of the search, its ability to adapt to the optimal answer 

is weak. But considering the results of bacterial swarming 

algorithms, it can be found out that at the end of the search 

and achieving the best bacteria, there is a great capability 

to adapt reference and optimized answer. 

 

APPENDIX 

Comparison of the Reference and Identification 

Parameters 
 

Table 4. Comparison of the reference and identification parameters of 

the transformer winding model 
 

Deviation from the  

reference 

BSA            PSO 

Identified Value 

BSA       PSO 

Reference  

Value 
Parameter 

1.576 

0.02434 

0.08578 

0.08977 

0.6362 

0 

0.11362 

0.03858 

2.9487 

0.03651 

0.9824 

0.1986 

3.8885 

0.01217 

1.1818 

0.14741 

4.5247 

0.01217 

1.06818 

0.10883 
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