

International Journal on

“Technical and Physical Problems of Engineering”

(IJTPE)

Published by International Organization of IOTPE

ISSN 2077-3528

IJTPE Journal

www.iotpe.com

ijtpe@iotpe.com

September 2014 Issue 20 Volume 6 Number 3 Pages 97-102

97

A CODE REORDERING BASE METHOD FOR STALL REDUCTION USING

GENETIC ALGORITHM

S. Saeedvand A. Allahvirdizadeh N. Fathalizadeh S.J. Mojaveri M. Zolfy Lighvan

Computer Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

s-saeedvand91@ms.tabrizu.ac.ir, a-allahverdizadeh91@ms.tabrizu.ac.ir, n-fathalizadeh91@ms.tabrizu.ac.ir

s-j-mojaveri91@ms.tabrizu.ac.ir, mzolfy@tabrizu.ac.ir

Abstract- The present study was aimed at minimizing the

number of mandatory stalls between the instructions of a

processor in compiling time in order to improve the

execution time of an instruction sequence. To this end, a

code reordering mechanism was employed. Given that the

code reordering problem is an NP-complete one (Non

deterministic polynomial), this study proposed a genetic

algorithm (GA) structure for improving processors’

performance. The algorithm, considering hardware

limitations of processors, was able to statically minimize

the number of mandatory stalls between instructions at

compile time, thus increasing processing speed.

Keywords: Code Reordering, Genetic Algorithm, Stall,

Chromosome, Fitness.

I. INTRODUCTION

Today, a wide variety of pipeline processors are used
in digital systems [1], and making these processors more
efficient seems highly important. This study is an attempt
to increase the speed of these processors through code-
reordering. Code reordering is generally used for
improving the speed of instructions execution in pipeline
processors. Different reordering methods have different
purposes and characteristics. One of the most important
methods of improving the run-time in pipeline processors
is code reordering in a dynamic manner. In such methods,
using different algorithms, instructions are dynamically
reordered during the run time by making changes to the
hardware structure of processors so that it can reduce the
number of mandatory stalls between the instructions.

Most dynamic code-reordering methods have their
own problems, especially hardware problems, which are
beyond the scope of this study. Another application of
code-reordering in processes is to develop a code-
reordering algorithm to minimize the amount of cache-
miss-rate. Code reordering is also used to improve the
speed of retrieving data from the memory [2-5] or even for
tracking systems [15]. This study sets out to introduce a
method for static code reordering in order to present a pre-
compiler which is able to reorder the processor’s
instructions before they are compiled, and to reduce the
amount of mandatory stalls between the instructions
caused by hardware limitations.

Static code-reordering is a non-deterministic

polynomial problem and is regarded as an NP-complete

problem (The non-deterministic polynomial problem is a

matter of decision which is solvable by temporal non-

deterministic polynomial algorithms) [8]. The current

paper provides a solution for this problem by introducing

a genetic algorithm with a new chromosome structure. The

proposed algorithm is considered within the limits of

instructions of MIPS processors.

A number of studies have been conducted on

improving the efficiency of processors. Some of these

studies are mentioned here, each of which offers a different

method for improving processor efficiency. John

Ruttenberg et al. [6] compared two code-producing

techniques to find out which one could produce the best

cods for pipeline processors with ILP architecture at the

compile-time. They examined their first technique on

MIPS processor compiler and the second one by allocation

of registers and scheduling. Hung Wang et al. [7] presented

a method for register renaming and scheduling the

dynamic performance of predicted codes. They could

enhance the efficiency of processors up to 16% by

evaluating and improving the performance prediction in a

dynamic schedule. In the following of the paper, first

section of the paper illustrates the proposed method; the

second section explains the implementation of the method,

and the third section presents the results.

II. BACKGROUND

A. Genetic Algorithms

A genetic algorithm (GA) [10] is a search heuristic that

mimics the process of natural evolution. This heuristic is

routinely used to produce useful solutions to optimization

and search problems. Genetic algorithms belong to the

larger class of evolutionary algorithms (EA), which

provide solutions to optimization problems using

techniques inspired by natural evolution such as

inheritance, mutation, selection, and crossover. In genetic

algorithms, a chromosome is a set of parameters which

define a proposed solution to the problem that the genetic

algorithm is trying to solve [14].

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 20, Vol. 6, No. 3, Sep. 2014

 98

B. MIPS Processors

The processor addressed in this study is the MIPS

processor. The MIPS processor, designed in 1984 by

researchers at Stanford University, is a RISC (Reduced

Instruction Set Computer) processor. In this processors,

execution of an instruction in a processor can be divided

into a number of stages. The number and functions of

stages are different in different processor designs [11-12].

C. Load Hazards
Consider the following code fragment:

lw $4, 1($3)

// Load the value at address 1+$3 into $4

add $1, $4, $3

The “lw” only writes the value from memory into the

register file in the WB phase, whereas the “add” retrieves

its operands in the ID phase. Thus, the “add” actually uses

an old value of “$1”. As before, it is better to ignore this

problem and call it a feature. The pipeline could also be

stalled for two cycles [13].

III. THE PROBLEM FORMULATION

 In the proposed code reordering mechanism, each

MIPS code in the initial specified order is considered a

chromosome the size of which is calculated by using the

following equation.

(*)chL L R (1)

where chL is the chromosome size, L is the number of the

instructions, and R is a constant with 7 values, indicating

the number of chromosome columns (for each instruction,

the individual data item is stored in the specified column).

The Stored information and details of chromosomal

structure will be explained in the ‘chromosome display

section’.

In the suggested method, the increase of population

size will decrease the required run-time of the proposed

algorithm. On the other hand, the small population size

may direct the problem to a solution, which is not

necessarily optimal. As a solution, it is suggested that the

population size be a function of the chromosome length;

that is, the longer the chromosomes are, the larger the

population will be.

 , *Size Size Size

L
P Ch P K

L E
 


 (2)

The equation on the right shows that the child

population size (SizeCh) is K times as large as the parent

population size (the constant K is obtained by a try and

error method). In the left-hand equation, SizeP stands for

the suggested parent population size; L is the number of

instructions; E is the number of independent instructions

in the chromosome, and K is a constant coefficient for

determining the parent population size, which is calculated

through a try and error method and its amount is

approximately equal to 6.

IV. LIMITATIONS

There are some limitations to the solution of the code-

reordering problem, which can be divided into two major

groups: hard limitations, which should be totally

considered in the schedule, and soft limitations, which

should be taken into account in the problem as far as

possible.

A. Hard Limitations

Hard limitations refer to the maintenance of the date

flow between instructions; in fact, in every code, some

instructions are dependent upon the results of previous

ones. Therefore, during the code reordering, instructions

cannot be transferred to a position before those dependent

on them. It should also be noted that the logical structure

of codes can by no means be violated in branches. These

are regarded as hard limitations, and the production of

those codes in different stages of running the genetic

operators in each chromosome is prevented.

B. Soft Limitations

Soft limitations are the limitations that reduce the

fitness of a chromosome, but their presence in the

chromosome is tolerable. In this study, soft limitations are

defined as the number of stalls in each chromosome

specifying a certain temporal penalty for running that

chromosome's codes in the processor.

C. Chromosome Display

As mentioned in the problem formulation and

population size calculation, each permutation is counted as

one chromosome, and each chromosome is defined as a

two- dimensional array.

Figure 1. Chromosome structure

Each code instruction is called a gene (the term will be

used later). In fact, the production of a chromosome

involves the conversion of a phenotype space to genotype

space. Figure 1 shows a two-dimensional example of these

chromosomes. As seen in the Figure, the first column

indicates the gene number of each instruction; the second

column shows the operation code of each gene; the third

up to fifth columns reveal the names of the used registers

in each gene; the sixth column indicates the first successor

dependent gene, and the seventh column shows the first

predecessor dependent gene. It should be noted that the

sixth and seventh columns specify the data flow of the

genes in the chromosomes.

D. Sample Chromosome Generation

The codes that were reordered are in the “Text” format,

and in order to use this text format, it had to be parsed by

a parser. As shown in Figure 2, a parser parsed the entered

MIPS codes and initialized a sample-created chromosome

so that for each line of the entered instruction codes, one

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 20, Vol. 6, No. 3, Sep. 2014

 99

gene or one line was created in the chromosome structure

Figure 1. The parser filled the fields in the chromosomal

structure Figure 1 and set the register numbers and the

dependencies between genes considering the order of all

instructions in the code so that they would be used in the

genetic algorithm.

Figure 2. Pre-compiler parts and MIPS code parser

E. Creating Population

In the next stage, using the sample chromosome

created by the parser described at stage 4, an array of

chromosomes was created. This array indicated that the

initial population and its length were equal. The initial

population (i.e. the parent population which was

considered an array of chromosomes) was generated

Equation (2). The initialization process of the created

initial population was as follows: with the aid of the

sample chromosome created by the parser, the genes of

each chromosome were randomly produced in the new

chromosome, given the hard limitations and maintenance

of permutation in genes (each gene of the sample

chromosome placed only once). It is noteworthy that the

purpose of considering the hard limitations was to prevent

disassembling the data flow in the genes. Finally, after

generating each chromosome, the amounts of Depend-D

and Depend-U were again updated for each gene in the

chromosome.

F. Mutation

In the presented algorithm, the mutation operator

performed the major task of making intelligent changes to

the genes of each chromosome to generate new children.

Here, the Mutation operator was viewed as two different

mutations in one chromosome. The amount of each

mutation was determined with regard to the mutation rate

of the parent population and therefore a new child

population was created.

F.1. First Type of Mutation

In the first mutation, the line of an independent gene in

each chromosome was changed. In a dependent gene,

changing the gene’s location in the code violates the hard

limitation and disorganizes the code data flow. In this

mutation, in each operation time, a gene was removed from

a line and was transferred to another line, while the general

data flow of the genes of corresponding chromosome was

maintained. Figure 3 provides an example of the first type

of mutation.

Figure 3. First type of mutation, on the left hand the related MIPS codes

F.2. Second Type of Mutation

In the second type of mutation, instead of the

displacement of the line of a single gene, the line of a group

of dependent genes in the chromosome was displaced

Figure (4). The rate of mutation in the first mutation type

was L/10 (1/10 of the genes of the relevant chromosome),

and in second type was L/100 (1/100 of the genes of the

relevant chromosome). It should be noted that after the

occurrence of each mutation in each chromosome, the

“depend-U” and “depend-D” columns of each

chromosome was revised and its amounts were updated.

Figure 4. Second type of mutation, on the left hand related MIPS codes

G. Fitness Function

The Fitness function indicated how acceptable a

chromosome was in the proposed method. Since the hard

limitations were to be prevented, to violate the soft

limitation (mentioned in the limitation section), a penalty

was imposed on each chromosome, which was defined as

follows:

  (*) i iFitness n S K (3)

where n is the specified chromosome,  Fitness n shows

the total number of genes which violate the soft limitation,

K is the constant factor of each limitation, and Si indicates

the violation or non- violation of the soft limitation for

each gene related to the specified chromosome. To obtain

the weight of the violated soft limitation related to each

chromosome (Si), the defined hazard rules were used for

defining the problem. As stated in code parsing and

mutation Section, for each chromosome in the child

society, the amounts of Depend-U and Depend-D columns

in the chromosomal structure were calculated. These

amounts helped to detect the hazards and stalls between

the instructions. For each stall, one unit was added to the

fitness amount of each chromosome.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 20, Vol. 6, No. 3, Sep. 2014

 100

H. Selection Function

In this selection, from the created population (i.e. the

chromosomes of the child population), the initial

chromosome population (or the parent population) was

selected again, regarding the fitness of each chromosome.

Considering different tests conducted by different

methods, the best result was achieved by using the

roulette-wheel [9]. In Figure 5, a sample of the selection

for four chromosomes is demonstrated, in which the

selection probability of each selection is defined on the

basis of its amount of fitness. In fact, in this method, the

amounts of fitness for each chromosome determined the

selection chance, but it is noteworthy that the selection was

made from a population ¼ of the size of the initial

population, and the number of children, according to

Equation (2), was more than that of parents, and thus there

were more children to selcet from.

Figure 5. Roulette-wheel

V. IMPLEMENTATION

This section addresses the stages of implementation

and performance of the genetic algorithm. After

determining the number of parent and child population, as

discussed in creation of initial population, the parents (as

an initial population) were initialized in a semi-random

way and then the amount of fitness for each chromosome

was calculated, using Equation (4). Finally, the target test

function was administered to the initial population.

The function of the target test is to investigate the

amount of each chromosome to find out whether the

chromosome response was optimal or not. Here, the

function of the target test function was to bring the amount

of the soft limitation down to zero. It should be noted that

in the run-time of the target test function, the best obtained

chromosome in every generation is stored as a response. In

the next stage, the mutation operator was administered to

the initial population (or parents).

After creating the child population, the functions of

fitness amount calculation and target test were

administered to the child population. In the next stage, if

the target test function failed to find the intended

chromosome, the selection function was administered to

the child population, and the parent population was

replaced by new chromosomes through the method

introduced in the selection Section. The process continued

until the calculated amounts for repeating the generations

ended or an optimal response (i.e. zero fitness of one of the

chromosomes) was produced.

VI. THE RESULT OF IN IMPLEMENTATION

The algorithm was implemented in C#.Net to examine

the results. As seen in Figure 6, this software program has

a code in MIPS language. After determining the mandatory

stalls in this code, the program specified the number of

parents’ and children’s chromosomes and the rate of

mutation and, having run the presented genetic algorithm,

it displayed the best possible results.

Figure 6. Implementation of the proposed algorithm

However, for different tests in the software program,

determining the amounts of genetic operations such as

parent and child population size was considered to be

manually changeable. The proposed method was tested

with different codes.

Figure 7. Results of implementation the proposed algorithm

As shown in Figure 7, some different states were tested

in 4 different values respectively. In the first step, 100 rows

of MIPS codes were tested, whereby 10% of the codes

were improved. This tests were implemented for 1000

instructions (such implementation required that 5% of the

codes be independent, and 5% of the codes make

mandatory stalls). In the 1000 rows of MIPS code, the

proposed algorithm could eliminate an average of 86% of

the mandatory stalls between the running codes, boosting

the processor’s efficiency. The results showed the number

of the mandatory stalls decreased by the algorithm, and as

mentioned earlier, the number of mandatory stalls directly

affects the run-time of the system processor.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 20, Vol. 6, No. 3, Sep. 2014

 101

VII. CONCLUSIONS

Nowadays, enhancing processors’ speed is an

important challenge in designing and manufacturing

processors. Designing processors by using the pipelining

method has considerably increased the speed of

processors; however, due to different limitations like

manufacturing expenses and different hardware-related

problems in the architecture of pipeline, it is not possible,

in some cases, to make use of the maximum potential of

processors; for instance, due to architectural problems in

processors, the occurrence of mandatory stalls between the

instructions is inevitable. This paper proposed a method

by which, using genetic algorithms, the instruction code of

an MIPS processor was compiled in Pre-Compile way

before being compiled by the MIPS processor; then the

written instruction code was reordered, and the results of

running, given the dependence existing in the instructions

of the code, were improved as much as possible.

REFERENCES

[1] H. Ma, “The Design of Five-Stage Pipeline CPU Based

on MIPS”, International Conference on Electrical and

Control Engineering (ICECE), pp. 433-435, Yichang, 16-

18 Sept. 2011.

[2] A. Gordon Ross, F. Vahid, N. Dutt, “A First Look at

the Interplay of Code Reordering and Configurable

Caches”, ACM Great Lakes Symposium on VLSI, pp.

416-421, 2005.

[3] Y. Chen, F. Zhang, “Code Reordering on Limited

Branch Offset”, Parallel Architectures and Compilation

Techniques, ACM Transactions on Architecture and Code

Optimization (TACO), Vol. 4, Issue 2, ACM New York,

USA, June 2007.

[4] X. Huang, S.M. Blackburn, D. Grove, K.S. McKinley,

“Fast and Efficient Partial Code Reordering”, 5th

International Symposium on Memory Management

Taking Advantage of Dynamic Recompilation, pp. 184-

192, 2006.

[5] J.C. Pichel , D.B. Heras, J.C. Cabaleiro, F.F. Rivera,

“Performance Optimization of Irregular Codes Based on

the Combination of Reordering and Blocking

Techniques”, Parallel Computing, Vol. 31, Issues 8-9 , pp.

858-876, 2005.

[6] J. Ruttenberg, G.R. Gao, A. Stoutchinin, W.

Lichtenstein, “Software Pipelining Showdown: Optimal

vs. Heuristic Methods in a Production Compiler”, ACM

SIGPLAN Conference on Programming Language Design

and Implementation, pp. 1-11, 1996.

[7] P.H. Wang, H. Wang, R.M. Kling, K. Ramakrishnan,

J.P. Shen, “Register Renaming and Scheduling for

Dynamic Execution of Predicated Code”, 7th International

Symposium on High-Performance Computer Architecture,

2001.

[8] T. Cooper, J. Kingston, “The Complexity of Timetable

Construction Problems”, Lecture Notes in Computer

Science, Vol. 1153, pp. 281-295, 1996.

[9] T. Weise, “Global Optimization Algorithms Theory

and Application”, pp. 124-129, 2009.

[10] M. Melanie, “An Introduction to Genetic

Algorithms”, MIT Press, Cambridge, MA, 1996.

[11] J.L. Hennessy, D.A. Patterson, “Computer

Architecture: A Quantitative Approach”, 3rd Edition,

Morgan Kaufmann Publishers, 2002.

[12] J.R. Hauser, J. Wawrzynek, “Garp: A MIPS Processor

with a Reconfigurable Coprocessor”, 5th Annual IEEE

Symposium on Field-Programmable Custom Computing

Machines, pp. 12-21, Napa Valley, CA, 16-18 Apr. 1997.

[13] M.L. Golden, “Reducing the Penalty of Branch and

Load Hazards in Pipelined Microprocessors”, Doctoral

Dissertation, University of Michigan Ann Arbor, MI,

USA, 1995.

[14] J.H. Holland, “Adaptation in Natural and Artificial

Systems”, University of Michigan Press, Ann Arbor, 1975.

[15] P. Mazurek, “Code Reordering Using Local Random

Extraction and Insertion (LREI) Operator for GPGPU-

Based Track-before-Detect Systems”, Springer-Verlag,

Soft Computing, Vol. 17, Issue 6, pp. 1095-1106, June 2013.

BIOGRAPHIES

Saeed Saeedvand received his B.Sc.

degree in Computer Software

Engineering from Islamic Azad

University, Iran in 2011. Currently,

he is pursuing his M.Sc. degree in

Computer Software Engineering in

Faculty of Electrical and Computer

Engineering, University of Tabriz,

Tabriz, Iran. He is working as a Lecturer in Islamic Azad

University, Iran since 2012. He is Capitan of Iran SoRoBo

humanoid kid size robotic team in Islamic Azad University

and he has two champions in IRANOPEN 2011 and 2012

robotic games and also he has one champions in

Khwarizmi AUT robotic games in 2010. His research

interest is in robotic and artificial intelligence.

Ali Allahvirdizadeh received his

B.Sc. degree in Computer Software

Engineering from Payame Noor

University, Iran in 2010. Currently, he

is pursuing his M.Sc. degree in

Computer Software Engineering in

Faculty of Electrical and Computer

Engineering, University of Tabriz,

Tabriz, Iran. His current interests include parallel

programming in GPU and CUDA software and sensor

networks using artificial intelligence approaches.

Nemat Fathalizadeh received his

B.Sc. degree in Computer Software

Engineering from Payame Noor

University, Iran in 2010. Currently, he

is pursuing his M.Sc. degree in

Computer Software Engineering in

Faculty of Electrical and Computer

Engineering, University of Tabriz, Tabriz, Iran. His

current interests include data mining algorithms and

algorithms modeling software.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 20, Vol. 6, No. 3, Sep. 2014

 102

Seyed Jamaledin Mojaveri received

his B.Sc. degree in Computer

Software Engineering from Islamic

Azad University, Iran in 2011.

Currently, he is pursuing the M.Sc.

degree in Computer Software

Engineering in Faculty of Electrical

and Computer Engineering,

University of Tabriz, Tabriz, Iran. His current interests

include distributed systems and algorithm modeling.

Mina Zolfy Lighvan received her

B.Sc. degree in Computer Engineering

(hardware) and M.Sc. degree in

Computer Engineering (Computer

Architecture) from ECE Faculty,

University of Tehran, Tehran, Iran in

1999, 2002, respectively. She received

Ph.D. degree in Electronic Engineering

(Digital Electronic) from Electrical and Computer

Engineering Faculty, University of Tabriz, Tabriz, Iran. She

currently is an Assistant Professor and works as a Lecturer in

Tabriz University. She has more than 20 papers that were

published in different national and international conferences

and journals. Her major research interests include text

retrieval, object oriented programming & design, algorithms

analysis, HDL simulation, HDL verification, HDL fault

simulation, HDL test tool VHDL, Verilog, hardware test,

CAD tool, synthesis, digital circuit design & simulation.

