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Abstract- The present study was aimed at minimizing the 

number of mandatory stalls between the instructions of a 

processor in compiling time in order to improve the 

execution time of an instruction sequence. To this end, a 

code reordering mechanism was employed. Given that the 

code reordering problem is an NP-complete one (Non 

deterministic polynomial), this study proposed a genetic 

algorithm (GA) structure for improving processors’ 

performance. The algorithm, considering hardware 

limitations of processors, was able to statically minimize 

the number of mandatory stalls between instructions at 

compile time, thus increasing processing speed. 

 

Keywords: Code Reordering, Genetic Algorithm, Stall, 

Chromosome, Fitness. 
 

I. INTRODUCTION                                                                         

Today, a wide variety of pipeline processors are used 
in digital systems [1], and making these processors more 
efficient seems highly important. This study is an attempt 
to increase the speed of these processors through code-
reordering. Code reordering is generally used for 
improving the speed of instructions execution in pipeline 
processors. Different reordering methods have different 
purposes and characteristics. One of the most important 
methods of improving the run-time in pipeline processors 
is code reordering in a dynamic manner. In such methods, 
using different algorithms, instructions are dynamically 
reordered during the run time by making changes to the 
hardware structure of processors so that it can reduce the 
number of mandatory stalls between the instructions.  

Most dynamic code-reordering methods have their 
own problems, especially hardware problems, which are 
beyond the scope of this study. Another application of 
code-reordering in processes is to develop a code-
reordering algorithm to minimize the amount of cache-
miss-rate. Code reordering is also used to improve the 
speed of retrieving data from the memory [2-5] or even for 
tracking systems [15]. This study sets out to introduce a 
method for static code reordering in order to present a pre-
compiler which is able to reorder the processor’s 
instructions before they are compiled, and to reduce the 
amount of mandatory stalls between the instructions 
caused by hardware limitations.  

Static code-reordering is a non-deterministic 

polynomial problem and is regarded as an NP-complete 

problem (The non-deterministic polynomial problem is a 

matter of decision which is solvable by temporal non-

deterministic polynomial algorithms) [8]. The current 

paper provides a solution for this problem by introducing 

a genetic algorithm with a new chromosome structure. The 

proposed algorithm is considered within the limits of 

instructions of MIPS processors.  

A number of studies have been conducted on 

improving the efficiency of processors. Some of these 

studies are mentioned here, each of which offers a different 

method for improving processor efficiency. John 

Ruttenberg et al. [6] compared two code-producing 

techniques to find out which one could produce the best 

cods for pipeline processors with ILP architecture at the 

compile-time. They examined their first technique on 

MIPS processor compiler and the second one by allocation 

of registers and scheduling. Hung Wang et al. [7] presented 

a method for register renaming and scheduling the 

dynamic performance of predicted codes. They could 

enhance the efficiency of processors up to 16% by 

evaluating and improving the performance prediction in a 

dynamic schedule. In the following of the paper, first 

section of the paper illustrates the proposed method; the 

second section explains the implementation of the method, 

and the third section presents the results. 
 

II. BACKGROUND 

 

A. Genetic Algorithms 

A genetic algorithm (GA) [10] is a search heuristic that 

mimics the process of natural evolution. This heuristic is 

routinely used to produce useful solutions to optimization 

and search problems. Genetic algorithms belong to the 

larger class of evolutionary algorithms (EA), which 

provide solutions to optimization problems using 

techniques inspired by natural evolution such as 

inheritance, mutation, selection, and crossover. In genetic 

algorithms, a chromosome is a set of parameters which 

define a proposed solution to the problem that the genetic 

algorithm is trying to solve [14]. 
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B. MIPS Processors 

The processor addressed in this study is the MIPS 

processor. The MIPS processor, designed in 1984 by 

researchers at Stanford University, is a RISC (Reduced 

Instruction Set Computer) processor. In this processors, 

execution of an instruction in a processor can be divided 

into a number of stages. The number and functions of 

stages are different in different processor designs [11-12]. 

 

C. Load Hazards 
Consider the following code fragment:  

lw   $4, 1($3)    

// Load the value at address 1+$3 into $4 

add $1, $4, $3 

The “lw” only writes the value from memory into the 

register file in the WB phase, whereas the “add” retrieves 

its operands in the ID phase. Thus, the “add” actually uses 

an old value of “$1”. As before, it is better to ignore this 

problem and call it a feature. The pipeline could also be 

stalled for two cycles [13]. 

 

III. THE PROBLEM FORMULATION 

     In the proposed code reordering mechanism, each 

MIPS code in the initial specified order is considered a 

chromosome the size of which is calculated by using the 

following equation. 

( * )chL L R  (1) 

where chL  is the chromosome size, L is the number of the 

instructions, and R is a constant with 7 values, indicating 

the number of chromosome columns (for each instruction, 

the individual data item is stored in the specified column). 

The Stored information and details of chromosomal 

structure will be explained in the ‘chromosome display 

section’. 

In the suggested method, the increase of population 

size will decrease the required run-time of the proposed 

algorithm. On the other hand, the small population size 

may direct the problem to a solution, which is not 

necessarily optimal. As a solution, it is suggested that the 

population size be a function of the chromosome length; 

that is, the longer the chromosomes are, the larger the 

population will be. 

      ,    *Size Size Size

L
P Ch P K

L E
 


 (2) 

The equation on the right shows that the child 

population size ( SizeCh ) is K times as large as the parent 

population size (the constant K is obtained by a try and 

error method). In the left-hand equation, SizeP  stands for 

the suggested parent population size; L is the number of 

instructions; E is the number of independent instructions 

in the chromosome, and K is a constant coefficient for 

determining the parent population size, which is calculated 

through a try and error method and its amount is 

approximately equal to 6.  

 

IV. LIMITATIONS 

There are some limitations to the solution of the code- 

reordering problem, which can be divided into two major 

groups: hard limitations, which should be totally 

considered in the schedule, and soft limitations, which 

should be taken into account in the problem as far as 

possible.  

 

A. Hard Limitations 

Hard limitations refer to the maintenance of the date 

flow between instructions; in fact, in every code, some 

instructions are dependent upon the results of previous 

ones. Therefore, during the code reordering, instructions 

cannot be transferred to a position before those dependent 

on them. It should also be noted that the logical structure 

of codes can by no means be violated in branches. These 

are regarded as hard limitations, and the production of 

those codes in different stages of running the genetic 

operators in each chromosome is prevented. 

 

B. Soft Limitations 

Soft limitations are the limitations that reduce the 

fitness of a chromosome, but their presence in the 

chromosome is tolerable. In this study, soft limitations are 

defined as the number of stalls in each chromosome 

specifying a certain temporal penalty for running that 

chromosome's codes in the processor. 

 

C. Chromosome Display 

As mentioned in the problem formulation and 

population size calculation, each permutation is counted as 

one chromosome, and each chromosome is defined as a 

two- dimensional array. 

 

 
 

Figure 1. Chromosome structure 

 

Each code instruction is called a gene (the term will be 

used later). In fact, the production of a chromosome 

involves the conversion of a phenotype space to genotype 

space. Figure 1 shows a two-dimensional example of these 

chromosomes. As seen in the Figure, the first column 

indicates the gene number of each instruction; the second 

column shows the operation code of each gene; the third 

up to fifth columns reveal the names of the used registers 

in each gene; the sixth column indicates the first successor 

dependent gene, and the seventh column shows the first 

predecessor dependent gene. It should be noted that the 

sixth and seventh columns specify the data flow of the 

genes in the chromosomes.   
 
D. Sample Chromosome Generation 

The codes that were reordered are in the “Text” format, 

and in order to use this text format, it had to be parsed by 

a parser. As shown in Figure 2, a parser parsed the entered 

MIPS codes and initialized a sample-created chromosome 

so that for each line of the entered instruction codes, one 
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gene or one line was created in the chromosome structure 

Figure 1. The parser filled the fields in the chromosomal 

structure Figure 1 and set the register numbers and the 

dependencies between genes considering the order of all 

instructions in the code so that they would be used in the 

genetic algorithm. 

 

 
Figure 2. Pre-compiler parts and MIPS code parser 

 

E. Creating Population 

In the next stage, using the sample chromosome 

created by the parser described at stage 4, an array of 

chromosomes was created. This array indicated that the 

initial population and its length were equal. The initial 

population (i.e. the parent population which was 

considered an array of chromosomes) was generated 

Equation (2). The initialization process of the created 

initial population was as follows: with the aid of the 

sample chromosome created by the parser, the genes of 

each chromosome were randomly produced in the new 

chromosome, given the hard limitations and maintenance 

of permutation in genes (each gene of the sample 

chromosome placed only once). It is noteworthy that the 

purpose of considering the hard limitations was to prevent 

disassembling the data flow in the genes. Finally, after 

generating each chromosome, the amounts of Depend-D 

and Depend-U were again updated for each gene in the 

chromosome. 

 

F. Mutation 

In the presented algorithm, the mutation operator 

performed the major task of making intelligent changes to 

the genes of each chromosome to generate new children. 

Here, the Mutation operator was viewed as two different 

mutations in one chromosome. The amount of each 

mutation was determined with regard to the mutation rate 

of the parent population and therefore a new child 

population was created. 

 

F.1. First Type of Mutation 

In the first mutation, the line of an independent gene in 

each chromosome was changed. In a dependent gene, 

changing the gene’s location in the code violates the hard 

limitation and disorganizes the code data flow.  In this 

mutation, in each operation time, a gene was removed from 

a line and was transferred to another line, while the general 

data flow of the genes of corresponding chromosome was 

maintained. Figure 3 provides an example of the first type 

of mutation. 

 

 
 

Figure 3. First type of mutation, on the left hand the related MIPS codes 

 

F.2. Second Type of Mutation 

In the second type of mutation, instead of the 

displacement of the line of a single gene, the line of a group 

of dependent genes in the chromosome was displaced 

Figure (4). The rate of mutation in the first mutation type 

was L/10 (1/10 of the genes of the relevant chromosome), 

and in second type was L/100 (1/100 of the genes of the 

relevant chromosome). It should be noted that after the 

occurrence of each mutation in each chromosome, the 

“depend-U” and “depend-D” columns of each 

chromosome was revised and its amounts were updated. 

 

 
Figure 4. Second type of mutation, on the left hand related MIPS codes 

 

G. Fitness Function 

The Fitness function indicated how acceptable a 

chromosome was in the proposed method. Since the hard 

limitations were to be prevented, to violate the soft 

limitation (mentioned in the limitation section), a penalty 

was imposed on each chromosome, which was defined as 

follows: 

  ( * ) i iFitness n S K  (3) 

where n is the specified chromosome,  Fitness n  shows 

the total number of genes which violate the soft limitation, 

K is the constant factor of each limitation, and Si indicates 

the violation or non- violation of the soft limitation for 

each gene related to the specified chromosome. To obtain 

the weight of the violated soft limitation related to each 

chromosome (Si), the defined hazard rules were used for 

defining the problem. As stated in code parsing and 

mutation Section, for each chromosome in the child 

society, the amounts of Depend-U and Depend-D columns 

in the chromosomal structure were calculated. These 

amounts helped to detect the hazards and stalls between 

the instructions. For each stall, one unit was added to the 

fitness amount of each chromosome. 
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H. Selection Function 

In this selection, from the created population (i.e. the 

chromosomes of the child population), the initial 

chromosome population (or the parent population) was 

selected again, regarding the fitness of each chromosome. 

Considering different tests conducted by different 

methods, the best result was achieved by using the 

roulette-wheel [9]. In Figure 5, a sample of the selection 

for four chromosomes is demonstrated, in which the 

selection probability of each selection is defined on the 

basis of its amount of fitness. In fact, in this method, the 

amounts of fitness for each chromosome determined the 

selection chance, but it is noteworthy that the selection was 

made from a population ¼ of the size of the initial 

population, and the number of children, according to 

Equation (2), was more than that of parents, and thus there 

were more children to selcet from.  

Figure 5. Roulette-wheel 

 

V. IMPLEMENTATION 

This section addresses the stages of implementation 

and performance of the genetic algorithm. After 

determining the number of parent and child population, as 

discussed in creation of initial population, the parents (as 

an initial population) were initialized in a semi-random 

way and then the amount of fitness for each chromosome 

was calculated, using Equation (4).  Finally, the target test 

function was administered to the initial population.  

The function of the target test is to investigate the 

amount of each chromosome to find out whether the 

chromosome response was optimal or not. Here, the 

function of the target test function was to bring the amount 

of the soft limitation down to zero. It should be noted that 

in the run-time of the target test function, the best obtained 

chromosome in every generation is stored as a response. In 

the next stage, the mutation operator was administered to 

the initial population (or parents).  

After creating the child population, the functions of 

fitness amount calculation and target test were 

administered to the child population. In the next stage, if 

the target test function failed to find the intended 

chromosome, the selection function was administered to 

the child population, and the parent population was 

replaced by new chromosomes through the method 

introduced in the selection Section. The process continued 

until the calculated amounts for repeating the generations 

ended or an optimal response (i.e. zero fitness of one of the 

chromosomes) was produced. 

VI. THE RESULT OF IN IMPLEMENTATION 

The algorithm was implemented in C#.Net to examine 

the results. As seen in Figure 6, this software program has 

a code in MIPS language. After determining the mandatory 

stalls in this code, the program specified the number of 

parents’ and children’s chromosomes and the rate of 

mutation and, having run the presented genetic algorithm, 

it displayed the best possible results.  

 

 
 

Figure 6. Implementation of the proposed algorithm 

 

However, for different tests in the software program, 

determining the amounts of genetic operations such as 

parent and child population size was considered to be 

manually changeable. The proposed method was tested 

with different codes.  
 

 
 

Figure 7. Results of implementation the proposed algorithm 
 

As shown in Figure 7, some different states were tested 

in 4 different values respectively. In the first step, 100 rows 

of MIPS codes were tested, whereby 10% of the codes 

were improved. This tests were implemented for 1000 

instructions (such implementation required that 5% of the 

codes be independent, and 5% of the codes make 

mandatory stalls). In the 1000 rows of MIPS code, the 

proposed algorithm could eliminate an average of 86% of 

the mandatory stalls between the running codes, boosting 

the processor’s efficiency. The results showed the number 

of the mandatory stalls decreased by the algorithm, and as 

mentioned earlier, the number of mandatory stalls directly 

affects the run-time of the system processor. 
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VII. CONCLUSIONS 

Nowadays, enhancing processors’ speed is an 

important challenge in designing and manufacturing 

processors. Designing processors by using the pipelining 

method has considerably increased the speed of 

processors; however, due to different limitations like 

manufacturing expenses and different hardware-related 

problems in the architecture of pipeline, it is not possible, 

in some cases, to make use of the maximum potential of 

processors; for instance, due to architectural problems in 

processors, the occurrence of mandatory stalls between the 

instructions is inevitable.  This paper proposed a method 

by which, using genetic algorithms, the instruction code of 

an MIPS processor was compiled in Pre-Compile way 

before being compiled by the MIPS processor; then the 

written instruction code was reordered, and the results of 

running, given the dependence existing in the instructions 

of the code, were improved as much as possible.    
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