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Abstract- The best configuration for generating electricity 

energy form a variable-speed wind energy conversion 

system (WECS) is using double-output induction 

generator (DOIG). Controlling this system in order to 

optimum performance on maximum extracting power 

from wind in each speed were attracted the attention of 

many researchers. This kind of generators use a rectifier 

and inverter know as static Kramer drive (SKD) and 

changes on the firing angle of the inverter can control the 

operation of the generator. Achieving above purpose is 

difficult because the behavior of this system under classic 

controller is very time variant and nonlinear and need to an 

adaptive controller is presented. With regard to high 

capability of neural network in control subject, in this 

paper one structure of this kind of networks for controlling 

wind energy conversion system was proposed. This 

controller uses recurrent neural network based on 

approximation of non-linear autoregressive moving 

average (NARMA) model. Feasibility and effectiveness of 

controller are demonstrated by simulation results. 

Different cases, such as applying a distinct disturbance, 

applying noise to system and Parameters variations and 

uncertainties of the system in order to study the ability of 

proposed controllers, were considered. 

 

Keywords: Double-Output Induction Generator, Wind 

Turbine, Neural Network Controller, Model Identification, 

Autoregressive Moving Average. 

 

I. INTRODUCTION 

Motivated by the high dependence of global economies 

on fossil fuels and concerns about the environment, 

increasing attention is being paid to alternative methods of 

electricity generation [1]. Clean renewable energy sources 

such as solar and wind, have been developed over recent 

years. Wind is now on the verge of being truly competitive 

with conventional sources. The cost, weight, and 

maintenance needs of mechanical gearing between the 

wind turbine and the electrical generator pose a serious 

limitation to the further increase in WECS power ratings 

[2]. 

Control plays a very important role in modern WECS. 

In fact, wind turbine control enables a better use of the 

turbine capacity as well as the alleviation of aerodynamic 

and mechanical loads, which reduce the useful life of the 

installation [1]. The main drawback is that the resulting 

system is highly nonlinear and thus, a nonlinear control 

strategy is required to place the system in its optimal 

generation point [3]. 

Many authors [4, 5, 6] surveyed fuzzy logic control, 

neural network (NN) control, expert system control and 

synthesis intelligent control methods that is used in the 

stability, speed control system and maximum-power 

transfer of WECS. 

Different non-linearization control ways have used for 

WECS. One of the best non-linearization control systems 

for the control of non-linearization system and high 

uncertainty is the use of adaptive self tuning strategy by 

use of NN. Mayosky and Cancelo [3] used this idea to 

control the WECS. They proposed a NN based structure 

consisting of two combined control actions -a Radial Basis 

Function (RBF) and a supervisory control network- based 

self tuning adaptive controller.  

Sedighizadeh et al. [7, 8, 9] used the idea of Self tuning 

control of nonlinear systems using NN adaptive frame 

wavelets to identify and control the WECS. They 

suggested an adaptive PI and PID controller using Rational 

function with Second-order Poles (RASP1) wavenets for 

wind turbine control. Sedighizadeh et al. [10] also 

suggested an adaptive controller using Morlet wavelets 

frames NN for identification and control of WECS. After 

that, Sedighizadeh et al [11] used the adaptive RBF PID 

controller based on reinforcement learning presented by 

WANG Xue-song et al. [12] to control the WECS. Also 

Sedighizadeh et al suggested an adaptive PID control 

based on lyapunov to control of WECS in [13]. 

Valenciaga et al. [14] present a control strategy based 

on adaptive feedback linearization intended for variable-

speed grid-connected WECS. The proposed adaptive 

control law accomplishes energy capture maximization by 

tracking the wind speed fluctuations. The main idea of our 

paper is extracted from Valenciaga’s work and the 

identification and control of WECS has been performed 

using recurrent neural network. 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 20, Vol. 6, No. 3, Sep. 2014 

 

30 

This paper is organized as follows. Section II derives 

the model of the system to be controlled. The resulting 

open-loop system is highly nonlinear. In section III the 

proposed adaptive controller based on recurrent neural 

network is introduced. Section IV discusses the application 

of proposed control strategy in WECS. The complete 

closed-loop system and simulation results are analyzed in 

this Section. The robustness of the proposed adaptive 

controller is evaluated by different cases. Finally, Section 

V resumes the conclusions. 

 

II. WIND ENERGY CONVERSION SYSTEMS 

Since the inception of the wind energy technology, 

machines of several types and shapes were designed and 

developed around different parts of the world. WECS are 

usually found in two schemes: fixed-speed, and variable-

speed. Fixed-speed WECS operate with optimum 

conversion efficiency only at a single wind speed. In order 

to make a better use of the turbine, variable-speed WECS 

were subsequently developed [1]. 

 

A. Wind Turbine Characteristics 

In this section, we present the application of wind 

turbine. Most of today's commercial machines are 

horizontal axis wind turbine (HAWT). 

Commonly, the output mechanical power and the 

torque developed by the wind turbine are expressed in 

terms of non-dimensional power ( PC ) and torque ( TC ) 

coefficients as follows [1]: 

 
320.5t PP R C V   (1) 

 
230.5t TT R C V   (2) 

where PC  and TC  satisfy 

T
P

C
C


  (3) 

The two coefficients are given as a nonlinear function 

of the parameter   

R
V

   (4) 

where is the air density,  is the radius of the turbine, V is 

the wind speed, and   is the rotational speed. Usually, 

PC  is approximated as follows, 

2 3
PC       (5) 

where  ,   and   are constructive parameters for a 

given turbine. Figure 1 depicts typical PC  versus turbine 

speed curves, with V  as a parameter. It can be seen that 

the maximum value for PC , i.e. maxPC  is constant for a 

given turbine. That value, when replaced in (1), gives the 

maximum output power for a given wind speed. This 

corresponds to an optimal relationship ( opt ) between   

and V . Figure 2 shows the torque/speed curves of a 

typical wind turbine, with V  as a parameter. The 

operation points of maximum power transference are 

marked on each curve. It can be observed that the 

maximum PC  (and thus, maximum generated power) and 

the maximum torque are not obtained at the same speed. 

The optimal performance is achieved when the turbine 

operates at the maxPC  condition. This will be the control 

objective in this paper [3]. 

 

 
Figure 1. Power coefficient PC  versus turbine speed. Wind speed is the 

parameter [3] 

 

 
Figure 2.  Torque versus shaft speed characteristics of a wind turbine 

tT   for different values of wind speed 

 

B. Induction Generators and Slip Power Recovery 

There are basically two generator configurations for 

variable-speed WECS: 

 Direct drive synchronous generator 

 Double output (wound rotor) induction generator 

(DOIG) 

 In the DIOG based system, the stator power is directly 

fed to the grid. However, the rotor power is partially 

recovered through an uncontrolled bridge rectifier, a line 

commutated inverter and a filter which are known as SKD 

and can change the electrical frequency as desired by the 

grid. The generator torque, and hence the system speed, 

can be controlled by modifying the firing angle of the 

inverter. Typical configuration of such a system is shown 

in Figure 3. 
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Figure 3. Schematic diagram of the WECS with DFIG 
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A simplified expression for the torque developed by 

the generator/Kramer drive combination is: 

    

2

2 2

3 s eq

g

m s eq e ls lr

sV R
T

sR R s L L 


   
  

  (6) 

where 

 

    

    

    

22
2 1 1

22

2 1

222 2
2 2 2

22

2 1

cos( ) cos( )

cos( )

0.55

2

cos( )

b s

eq

b r f

b s s e ls lr

b e ls lr

s n sR n R n

R

n s n

R R R

n R sR n sR n s L L

n R n L L

  



 

 

  
  





 

   

   
  

 (7) 

where s is the generator slip, sV  the stator voltage, rR , 

,sR  fR  the resistance of rotor, stator and filter (dc link), 

respectively, lsL  , lrL  the leakage inductance of stator and 

rotor, m  the mechanical synchronous rotational speed,  

the synchronous electrical angular frequency, 1n  the 

transformation ratio between rotor and stator wounds, 2n  

turn ratio of the transformer between the SKD output and 

the AC line and   the firing angle of inverter. (All values 

referred to the rotor side). 

Equation (6) can be simplified, for design purposes, by 

using a first-order approximation 

  

 

22
1 2

2
22

1 2 3

3 cos3

cos

ss
g

m bm b

V n nV
T

R nR n

d d d






 


  

  

 (8) 

where 1d , 2d  and 3d  are constants. 

 

C. Turbine / Generator Model 

The dominant dynamics of the whole system (turbine 

plus generator) are those related to the total moment of 

inertia. Thus ignoring torsion in the shaft, generator’s 

electric dynamics, and other higher order effects, the 

approximate system’s dynamic model is 

   , ,t gJ T V T       (9) 

where J  is the total moment of inertia. Regarding (2), (3), 

(5) and (8), system’s model become 

  

 

23 2

1 2 3

1
0.5

cos

J R V
J

d d d

    

 

    


   

 (10) 

where   and  depend on   in a nonlinear way (4). 

Generator parameters change due to aging and 

temperature. Therefore using a nonlinear adaptive control 

strategy is required. This control strategy system aims at 

placing the turbine in its maximum power generation 

point, despite the variations in the wind speed and 

generator’s parameters. The turbine torque, tT  for a given 

V , and the generated torque, gT , for a given , are 

sketched in Figure 4.  

It should be mentioned that for a given wind speed, the 

turbine’s operational curve and optimum generation point 

are fixed. According to (9), the intersection of tT  and gT

curves represents the equilibrium point () of the turbine-

generator pair. The control strategy converges the 

rotational speed,  , and turbine torque, tT , to their 

optimal values by changing the firing angle of the inverter, 

as the wind speed changes [3]. 

 

 
 

Figure 4.  Control strategy proposed. The firing angle is adjusted so that 

the turbine’s operation point settles to the maxPC condition 

 

The designing of system is so that the maximum turbine 

torque occurs 0.5 to 0.7 of the generator torque peak. 

Regarding to the generator torque curves in this region gT  

is considered as a linear expression [3]. The generated 

torque curve in optimal point is shown in Figure 4. The 

standard normal form for expression in (10) can be 

rewritten as 

 f bu     (11) 

where f f is a nonlinear function of rotational speed,  ,  

is a constant and  is the system input which is the  cos .  

 

III. PROPOSED CONTROL STRATEGY 

Nowadays, considerable attention has been focused on 

use of artificial neural network (ANN) on system modeling 

and control applications. The NN has several key features 

that make it suitable for controlling nonlinear systems. 

These features include parallel and distributed processing, 

and efficient nonlinear mapping between inputs and 

outputs without an exact system model. Also NNs are 

characterized by the rapidity of response and robustness, 

which make them attractive to control WECS [2]. The 

most successful topologies for this purpose are recurrent 

neural network. They are important because most of the 

system to be modeled and controlled are indeed nonlinear 

dynamic ones and used feedback in these structures lead to 

performing control function well [15]. 

There are typically two steps involved when using 

neural networks for control: 

1. System identification 

2. Control design 

System identification is the procedure that develops 

models of a dynamic system based on the input and output 

signals from the system. And in the control design stage, 

the neural network plant model is used to design (or train) 

the controller. 
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The representation of single input single output (SISO) 

dynamical systems using state equations is currently well 

known. Let a system   be represented by state equations 

     

   

: 1 ,x k f x k u k

y k g x k

     

   

 (12) 

where   x k ,   u k , and   y k are discrete time 

sequences with   nx k  ,  u k  , and  y k  . 

The only accessible data are the input u  and output y . If 

the linear system around the equilibrium state is 

observable, an input-output representation exists which 

has the form is known as nonlinear autoregressive moving 

average (NARMA) model: 

       

     

1 , 1 , , 1 ,

, 1 , , 1

y k y k y k y k n

u k u k u k n

    

  
 (13) 

i.e. a nonlinear function exists that maps  y k , and   ,u k  

and their  past values, onto . 

Even assuming that such a model is available (or has 

been identified using neural networks), determining the 

control input that results in a desired output is no longer a 

simple task since the output depends nonlinearly on the 

input. As a consequence, various approximate methods 

have been proposed for the determination of the control 

input [16]. Narendra et al. [16, 17] present two 

approximate input–output models derived from the 

NARMA model, in which the control input appears 

linearly. As mentioned in this paper, designed neural 

controllers by these approximation models have better 

performance than neural controllers based on precise 

NARMA model. 

When the system (12) in a neighborhood of the 

equilibrium state, has a relative degree d  (for defining 

relative degree refer to [17]), it can be shown that the 

input-output representation of the system is given by [16]: 

       

     

, 1 , , 1 ,

, 1 , , 1

y k d y k y k y k n

u k u k u k n

    

  
 (14) 

Equation (14) is for identification of given system and its 

control is needed. 

 

A. Identification Using Neural Networks 

Since the function     is known to exist in a 

neighborhood of the equilibrium state, a multilayer 

perceptron (MLP) or a radial basis function (RBF) network 

can be used to identify it. If 
2: nNN    is a map 

represented by the neural network, identification model is: 

       

     

ˆ , 1 , , 1 ,

, 1 , , 1

y k d NN y k y k y k n

u k u k u k n

    

  
 (15) 

where  ŷ k d  is the estimate of  y k d , and can be 

used to predict the output at time  based on  past values of 

the input and output at instant k . The parameters of the 

network NN  are adjusted using static back propagation so 

as to minimize the below identification error: 

     ˆ
ie k y k y k   (16) 

 

B. Control Design 

Since the relative degree d  exists, the system is 

necessarily controllable and  / 0u k    along the 

trajectory. Hence, by the implicit function theorem [16] 

       

   

, , 1 , ,

1 , , 1

du k y k y k n y k d

u k u k n

   

  
 (17) 

where 
2: n    exists. The control problem is 

consequently to determine (or estimate)   from the 

measured values of inputs and outputs as well as the given 

desired output  dy k d . The adjustments of the 

parameters of a neural network used to approximate  .  

For this purpose, the parameters of a neural network used 

to approximate   must be adjusted (using some gradient 

method) to minimize the control error expressed in 

Equation (18). 

     c de k y k y k   (18) 

In [16] for this control aim two approximate models are 

introduced. The main feature of those models is that the 

control input  u k  at time k  (the instant of interest in the 

control problem) occurs linearly in the equation relating 

inputs and outputs. 

- NARMA-L1 Model: 

       

       

0

1

0

, 1 , , 1

, 1 , , 1
n

i
i

y k d f y k y k y k n

g y k y k y k n u k i




       

       
 (19) 

- NARMA-L2 Model: 
 

       

   

     

     

0

0

, 1 , , 1 ,

1 , , 1

            , 1 , , 1 ,

                      1 , , 1

y k d f y k y k y k n

u k u k n

g y k y k y k n

u k u k n u k

    

   

   

   

 (20) 

It is seen that  0f   and in the equation describing 

NARMA-L1 are only functions of the past values of the 

outputs, and    1 , , 1u k u k n    as well as occur 

linearly on the right-hand side (RHS) of (19). In contrast 

to this, NARMA-L2 model is described by only two terms 

in   the   RHS   of   (20)   where   both    0f     and   0g   

are function of      , 1 , , 1y k y k y k n    and  

   1 , , 1u k u k n    [16]. This model is in companion 

form, where the next controller input is not contained 

inside the nonlinearity. The advantage of this form is that 

we can solve for the control input. The proposed control 

structure in this paper is based on NARMA-L2 model. 

In our proposed control strategy, the controller is 

simply a rearrangement of the neural network plant model, 

which is trained offline, in batch form. It requires least 

computations and the only online computation is a forward 

pass through the neural network controller. 
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The controller is simply a rearrangement of the neural 

network plant model, which is trained offline, in batch 

form. The only online computation is a forward pass 

through the neural network controller. The drawback of 

this method is that the plant must either be in companion 

form, or be capable of approximation by a companion form 

model. 

The neural network controller described in this section 

is referred to by two different names: feedback 

linearization control and NARMA-L2 control. It is 

referred to as feedback linearization when the plant model 

has a companion form. It is referred to as NARMA-L2 

control when the plant model can be approximated by the 

same form [18]. 

 

C. Identification of the NARMA-L2 Model 

The first stage of this control architecture discussed in 

this paper is to train a neural network to represent the 

forward dynamics of the plant. The error between the 

neural network output and the WECS(plant) output which 

is expressed in Equation (16) is used as the neural network 

training signal. The process is represented by Figure 5. 

 

Plant

Neural Network 

Model

Learning Algorithm

+ -

 
 

Figure 5. Plant identification 

 

We train a neural network to approximate the nonlinear 

functions  0f   and  0g  . Solving the equation (20) form 

for the control input that causes the system output to follow 

the desired output    dy k d y k d    we will have 

         

       
0

0

, , 1 , 1 , , 1
( )

, , 1 , 1 , , 1

dy k d f y k y k n u k u k n
u k

g y k y k n u k u k n

        


      

 (21) 

Using this equation directly can cause realization 

problems, because you must determine the control input 

 u k  based on the output at the same time,  y k . So, 

instead, use the model 

       

     

     

     

0

0

, 1 , , 1 ,

                     , 1 , , 1

             , 1 , , 1 ,

                       , , 1 1

y k d f y k y k y k n

u k u k u k n

g y k y k y k n

u k u k n u k

    

   

   

  

 (22) 

where 2d  . The structure of the neural network plant 

model is given in Figure 6, where the blocks labeled TDL 

are tapped delay lines that store previous values of the 

input signal. This structure is known as Recurrent or 

dynamic neural networks. Notice that we have separate 

sub-networks to represent the functions  0f   and  0g  . 
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Figure 6. NARMA-L2 plant model 

 

D. The NARMA-L2 Controller 

Using the NARMA-L2 model and equation (22), we 

can obtain the input of the controller 

         
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0

0
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dy k d f y k y k n u k u k n
u k

g y k y k n u k u k n

       
 

     

 (23) 

which is realizable for 2d  . This controller can be 

implemented with the previously identified NARMA-L2 

plant model, as depicted in Figure 7. 
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Figure 7.  Implementation of NARMA-L2 Controller 

 

The neuro controller for NARMA-L2 control WECS is 

provided in Figure 8, in which the input signal of system 

is cosine of firing angle of the inverter and its output is the 

speed of turbine shaft. 

 

WECS
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NARMA-L2 Controller
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Figure 8. Closed loop block diagram 
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The optimum shaft rotational speed opt  is obtained for 

each wind speed V , and used as a reference for the close 

loop control of WECS. In reality, yields the speed in which 

the extracted power from turbine is maximum. Note that 

wind speed also acts as a perturbation on the turbine’s 

model. Actually, the turbine is coupled with the 

generator’s shaft using a gearbox, which imposes an 

additional unknown dynamic to the model. 

Each subnetwork that is used for approximation of 

 0f  and  0g   has a two layers structure. Activation 

functions of hidden layers and output layers are hyperbolic 

tangent sigmoid (tansig) and Purelin respectively. It is 

shown in Figure 6. In addition, the network uses the 

Levenberg- Marquardt back propagation algorithm for 

training. Two sets of inputs enter to the neural network 

model of system (identification block in Figure 8): delayed 

values of the plant output, and delayed values of the 

controller output. The controller is obtained directly with 

a simple equation from identified model. The controller 

structure distinguishes with modification of delayed values 

in input layer and number of neurons in hidden layer. 

 

IV. SIMULATION RESULTS 

 

A. Identification of WECS 

In this section, the proposed controller is employed to 

develop a NN model of the plant. The characteristics of the 

turbine/generator pair used for the simulations in this paper 

are summarized in [3], but they are considered unknown 

for the controller. 

To modeling stage requires the acquisition of process 

inputs-outputs data. For the different WECS’s modes to be 

activated, we will apply a signal rich in frequencies: a 

pseudo-random sequence around the requested system 

output. 

The input vectors and target vectors are randomly 

divided into two sets as follows: 

- 75% of them are subject to use for training of neural 

network controller. 

- The reminded 25% are utilized for network testing that 

capability of network is evaluated. 

The desire multilayer structure of network which is used 

for identification and control of the WECS has been 

obtained by trial and error method. Number of considered 

training sample are 32000. The best configuration is when 

delayed values of the plant output are 4 and delayed values 

of the controller output are considered 3. In each hidden 

layer, 17 neurons are placed. So, each sub-network has a 

structure like 6-17. Initial values of weights and biases are 

supposed zero. 

The change in the performance error during the NN 

learning process is shown in Figure 9. To evaluate 

accuracy of identified neural model of WECS, a linear 

regression is applied to the network outputs and the 

corresponding targets. The Fig. 10 shows the results. This 

figure shows the actual output tracks the reference output 

very well for training and testing, and the R-value 

(Correlation Coefficients) is over 0.99 for the total 

response. 

 
Figure 9. Change in the performance error during the NN learning 

process (Solid: train and Dotted: test) 

 

 
Figure 10. Linear regression between the network outputs and the 

corresponding references (values are in m/s) 

 

B. Control 

When WECS was identified well, neural network 

controller (control block in Fig. 8) implement for tracking 

of desired set point. In addition to main duty of controller 

which is tracking of desired signal (in here is optimum 

wind speed), it should have some characterizations. For 

instance it should reject instinct disturbance, should resist 

in front of noisy system, also it should perform its 

functions properly if parameters of identified system 

became uncertain or changed a little. So this stage has been 

done for three different cases to investigate the quality of 

proposed controllers. 

- Case 1: a major disturbance in wind turbine speed is 

applied at 570 seconds. 

- Case 2: a random Gaussian noise with normal 

distribution an variance 0.001 adds to eqR  which is a 

function of input cos( ) . 

- Case 3: according to Equation (10) 

0 10 20 30 40 50 60 70 80 90 100

10
0

Performance is 0.0002491 at epoch 100

M
e
a
n
 S

q
u
a
re

d
 E

rr
o

r 
 (

m
s
e

)

100 Epochs

 

 

42 44 46 48 50 52

42

44

46

48

50

52

Refrence output

A
c
tu

a
l 
o

u
tp

u
t

Training: R=0.99999
Actual output~=1*Refrence output+0.0016

 

 

Data

Fit

A = R

42 44 46 48 50 52

42

44

46

48

50

52

Target

O
u

tp
u

t~
=

1
*T

a
rg

e
t+

-0
.0

1
1

Validation: R=0.99999

 

 

Data

Fit

Y = T

42 44 46 48 50 52

42

44

46

48

50

52

Refrence output

A
c
tu

a
l 
o

u
tp

u
t

Test: R=0.99998
Actual output~=1*Refrence output+-0.0028

 

 

Data

Fit

A = R

42 44 46 48 50 52

42

44

46

48

50

52

Refrence output

A
c
tu

a
l 
o

u
tp

u
t

All: R=0.99999
Actual output~=1*Refrence output+-0.0024

 

 

Data

Fit

A = R



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 20, Vol. 6, No. 3, Sep. 2014 

 

35 

    1 cosk F m    (24) 

where  F   is a nonlinear function of cos( ) , and  is a 

scalar value. During the learning of neural system model 

step (identification phase), mm  value equal to1. Now for 

control phase it has been supposed that a parameter is 

varied and its value consider equal to 1.3. 

- Case 1: The simulation results are displayed in Figure 11. 

In this figure, a pseudoaleatory sequence of step-shaped 

wind gusts is applied to the system. The resulting evolution 

of the closed loop converges rapidly to the desired optimal 

rotational speed. In addition, it can be shown that the 

applied disturbance rejects quickly and appropriate 

performance of controller leads to the closed loop system 

goes to its normal behavior in less than 0.2 seconds. 

Variations of control signal, cos( ) , during control 

process are demonstrated in Figure 12. 

 

 
Figure 11. Closed loop system response to a pseudoaleatory sequence of 

wind gusts in case 1 

 

 
Figure 12. Variations of control signal, cos( )  in case 1 

 

- Case 2: Figure 13 shows simulation results in this case. 

Considering applied noise in system the controller can 

guarantee stability of system. Variations of control signal 

are demonstrated in Figure 14. 

- Case 3: If some parameters of a nonlinear WECS 

changed, many controllers can not control them well and 

desired signal tracking may be unacceptable. The 

simulation results have been shown in Figures 15 and 16. 

As we can observe, in this case with regarding to adaptive 

characteristic of controller, the rotational speed of turbine 

shaft signal follow the referent signal speed as well and the 

controlled system is robust against parameter variations 

and uncertainties. 

 
Figure 13. Closed loop system response to a pseudoaleatory sequence of 

wind gusts in case 2 

 

 
Figure 14. Variations of control signal, cos( )  in case 2 

 

 
 

Figure 15. Closed loop system response to a pseudoaleatory sequence of 

wind gusts in case 3 

 

 
Figure 16.  Variations of control signal, cos( )m   in case 3 

 

Another figure that could show us the way of desired 

performance of presented controller architecture for 

extracting maximum power of WECS, is the turbine torque 

curves versus rotational speed of one, for given wind 

entrance. This curve has been shown in Figure 17, in which 
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the characteristic of turbine in various wind speed also are 

added. It is obvious that the path of torque controlled 

system converge toward points that maximum power is 

extracted form wind. 

 

 
Figure 17.  System response on torque/speed coordinates, for the same 

input sequence of Figure 11. Developed torque (points) converges to the 

maximal torque curve, ensuring optimal operation 

 

V. CONCLUSIONS 

A control strategy to optimize power generation of 

variable speed grid-connected WECS was presented. This 

paper discussed the application of NN in the 

implementation of adaptive controllers for WECS. The 

utilized approach, based on a recurrent neural network, 

allowed fast convergence to a nonlinear dynamic behavior. 

The effectiveness of the control has been demonstrated 

through the use of computer simulation to investigate the 

quality of proposed controller different cases were 

considered and was shown that presented controller is 

robust against major instinct disturbance of system, noisy 

condition and uncertainties and changes in parameters and 

it could do the tracking very well. 

Finally, it is important to remark that even though 

calculations were made for a particular variable speed 

WECS, idea behind the control strategy developed in this 

paper is general and can be readily extended to other systems.  
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