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Abstract- In this paper, we represent the results of 

finding the free oscillations frequency of a flowing 

liquid-filled cylindrical anisotropic shell strengthened 

with the crossed systems of ribs under Navier’s boundary 

conditions. It is assumed that the axis of elastic symmetry 

in the shell with peripheral direction forms an angle. 

Using the Ostrogradsky-Hamilton variational principle, 

we construct a frequency equation and realize it 

numerically. The results of calculations of eigen 

frequencies of oscillations are represented in the form of 

dependences on the winding angle for the shell and on the 

flowing liquid velocity at different values of wave 

formation parameters and different relations between the 

parameters characterizing geometrical sizes of the shell. 

 

Keywords: Shell, Oscillation, Variational Principle, 

Modulus of Elasticity, Deformation, Liquid. 

 

I. INTRODUCTION 

In engineering practice the use of polymeric materials, 

in particular glass reinforced plastics makes necessary to 

take into account anisotropy of elastic properties when 

studying low-frequency oscillations of shells. For rigidity 

the thin walled part of the shell is strengthened with ribs 

that essentially increases its strength at negligible 

increase of the mass of construction even if the ribs have 

small height.  

Dynamical analysis is one of the important problems 

on designing stage of thin walled shelled constructions 

widely used in aviation, rocket-cosmic engineering and 

various fields of industry. The necessary element for 

studying dynamics of shells is definition of eigen 

frequencies and forms of small oscillations, where the 

frequencies from lower sector present great interest for 

applications. The results of finding of eigen frequencies 

of axially symmetric oscillations of orthotropic, liquid-

filled, unstrengthen cylindrical shells in infinite elastic 

medium were represented in the papers [1, 2].  

The monograph [3] was devoted to investigation of 

stability and oscillations of strengthened isotropic shells 

without medium. Eigen oscillations of a flowing liquid-

filled isotropic cylindrical shell strengthened with 

longitudinal and crossed system of ribs were considered 

in the papers [4, 5].  

 In this paper, we present the results of finding free 

oscillations frequencies of a cylindrical, structural, 

flowing liquid-filled anisotropic shell made of a glass 

reinforced plastic and strengthened with a cross system of 

ribs at Navier’s boundary conditions. It is assumed that 

all the ribs are strengthened on the external surface of the 

casing, are arranged at equal distances and have the 

identical geometrical and mechanical characteristic.  

The results of calculations of eigen frequencies of 

oscillations are represented in the form of dependences 

on the winding angle of the glass fibre for a shell made of 

tissue glass-reinforced plastic and on the velocity of 

flowing liquid at various values of wave formation 

parameters and different relations between the parameters 

characterizing geometrical sizes of shell. The solution of 

problem is based on Ostrogradsky-Hamilton’s principle.  

 

II. PROBLEM STATEMENT 

The frequency equations of free oscillations of a 

flowing liquid-filled anisotropic shell strengthened with 

cross systems of ribs were obtained on the principle of 

Ostrogradsky-Hamilton’s action stationarity principle 

0W   (1) 

where 

''

'

t

t

W Ldt   is Hamilton’s action, L  is the 

Lagrange function, 't  and ''t  are the given arbitrary 

moments.  

For applying the Ostrogradsky-Hamilton Equation 

(1), we preliminarily write the total energy of the system 

consisting of a shell, longitudinal and lateral bars and 

liquid. It is accepted that the longitudinal ribs are 

arranged along the generator, the lateral ones along the 

perimeter of the shell’s cross section and are rigidly 

connected with it. The system of coordinates was chosen 

so that the coordinate lines coincide with the principles 

curves of the median surface of the shell; x  along the 

generator,   along the arch of the shell’s cross section, 

z  along the normal of the shell’s median surface. 
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The total energy of the elastic deformation of flowing 

liquid-filled anisotropic cylindrical shell strengthened 

with cross systems of ribs is of the form [3, 10, 11]: 
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The expressions for inner forces and moments are 

represented in the following way [10]: 

   
/2 /2

/2 /2
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where,  
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 The stresses ij  and strains ij  in the median surface 

in Equation (3) are determined as follows [10]:  
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 The elasticity constants depend on the winding angle 

  of the fiberglass and are determined as [10]:  
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where,   is the angle formed by the direction of glass 

fiber with peripheral direction, R  is the radius of the 

shell’s median surface, h  is the shell thickness, wu ,,  

are the components of displacements of the points of the 

shell’s median surface, kpiyizii JJJF ,,,  are the square 

and inertia moments of the cross section of the ith 

longitudinal bar with respect to the axis Oz and the axis 

parallel to the axis Oy  and crossing through the gravity 

center of the cross section, and also its inertia moment at 

torsion; iF  is the area of the cross section of the 

longitudinal rib; ii GE
~

,
~

 are modulus of elasticity and 

shift of the material of the ith longitudinal bar, 

ji 


,~,0  are densities of materials from which the shell 

was made, i  is the longitudinal bar, j  is the lateral bar, 

respectively, L  is the shell length, zq  is the pressure of 

liquid on the shell, , , ,j zj yj kpjF J J J  area and inertia 

moments of the cross section of the jth lateral bar with 

respect to the axis Oz , and the axis parallel to the axis 

Oy  and passing through the gravity center of the cross 

section, and also its inertia moment at torsion; ii GE
~

,
~

 are 

the module of elasticity and shift of the material of the 

jth lateral bar, respectively, t  is the time coordinate, 
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 Supposing that the main velocity of the flow equals 

U  and deviations from this velocity are small, we use the 

wave equation for the potential of perturbed velocities   

according to [10]:  
2 2 2

2

2 2 2 2
0

1
2 0U U

R ta t R
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 (6) 

 On the contact surface a shell-liquid we observe the 

continuity of radial velocities and pressures. The 

condition of impermeability or fluency at the shell wall is 

of the form [10, 11]: 
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 Equality of radial pressures of liquid on the shell:  

z r R
q p


   (8) 

 Complementing by contact conditions (7) and (8) the 

expression for the total energy of the shell (1), equation 

of motion of liquid (6), we arrive at the problem of eigen 

oscillations of anisotropic flowing liquid-filled cylindrical 

shell strengthened with crossed systems of ribs. 

 

III. PROBLEM SOLUTION 

 We will look for displacements of the shell in the 

form of:  
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where 000 ,, wu   are unknown constants; ,n  are wave 

numbers in longitudinal and peripheral directions, 

respectively, ,,,/ 01 ttkRRx    01 /  

is the sought-for frequency. 

 We look for the potential of perturbed velocities    

in the form:  

    1 1, , , cos sin sinr t f r n t       (10) 
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1 1 1 , nR M I    is the n  order modified Bessel 

function of first kind, nJ  is n  order Bessel function of 

first kind. 

 In the sequel, in (8) and place of zq  we should take 

the value pqz  , where p  is the pressure according to 

(11). Allowing for (9) we can represent the pressure p  as 

follows:  
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 After substituting (13), (9) in (5), the problem is 

reduced to the homogeneous systems of linear algebraic 

equations of third order  
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 The elements  1 2 3, , 1,2,3i i ia a a i   have a bulky 

form and we don’t cite them. The nontrivial solution of 

the system of linear algebraic equations in (14) of third 

order is possible only in the case when 1  is the root of 

its determinant. The determination of 1  is reduced to 

transcendental equation as 1  enters into the argument of 

the Bessel function nJ : 

 
 

  
0

2

2

2

2
02

133336655

66
2
1222244

5544
2
11111















zq






 (15) 

 Note that for  20 0U    in Equation (15) goes 

into the frequency equation of free oscillations of an 

anisotropic cylindrical shell filled with liquid in rest and 

strengthened with lateral systems of ribs. Consider some 

results of calculations executed proceeding from the 

above mentioned dependences by means of ICM.  

 For geometrical and physical parameters 

characterizing the shell’s materials we adopted:  
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 In Figure 1 the dependence of the frequency 

parameter 1  on relative velocity of the flow 

*
0/ ,U U c c R   at various values of   and n  is 

given. It is seen that increase in velocity reduces to 

decrease in frequency of the system’s oscillations. It is 

very important to notice the value of *U  at which the 

frequency of oscillations approaches to zero. Here the 

loss of shell’s stability should happen. 
 

 
Figure 1. Dependence of frequency parameter on velocity of flow for a 

moving liquid-filled cylindrical shell strengthened with crossed system 

of ribs 

 

 

 
    

0 

0.52
 

0.92
 

0.72
 

 

 

 

 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 24, Vol. 7, No. 3, Sep. 2015 

66 

In Figure 2 the dependence of frequency on the 

winding angle for various ratios of Rh /  was given. It 

follows from the figure that influence of change of the 

ratio of Rh /  on the value of eigen frequency is of very 

complicated character. The character of dependence is 

complicated when decreasing the ratio of Rh / .  
 

 
 

Figure 2. Dependence of the parameter of frequencies of free 

oscillations on the winding angle   

 

 At last the dependence of the frequency parameter of 

oscillations of the system under investigation on the 

number of longitudinal ribs at various values of lateral 

ribs is depicted in Figure 3, where 1 16k   corresponds to 

solid lines, 1 12k   to dotted lines. It is seen from the 

figure that with increasing the number of longitudinal and 

lateral ribs, at first the oscillations frequency of the 

construction under consideration increases, and then 

begins to decrease. This is explained by the fact that with 

increasing the number of ribs their mass increases and 

this effects on increase of inertial actions on the 

oscillations process of the system. 
 

 
Figure 3.  Dependence of the oscillation frequencies parameter on the 

number of   longitudinal ribs 
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