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Abstract- Reliable analysis of a medium-contacting 

cylindrical shell for a durable strength assumes account 

of the formed and accumulated defects and damages and 

influence of external media and forces. The destruction of 

contact ructions happens when damages achieve 

dangerous level. Namely in this connection the study of 

interaction of these processes, i.e. study of influence of 

fluid on stability parameter and oscillations of thin 

shelled laterally strengthened structural elements, 

especially on the frequency of parametric oscillations. 
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I. INTRODUCTION 
It is known that external medium may have a great 

effect on the strength of materials present in it. So, for 

example, strength test of metallic viscous-fluid contacting 

structural elements, testifies that fluid has a significant 

influence on dynamical strength characteristics of metals. 

The said one relates especially to thin shelled structural 

elements that are disposed in the greatest degree to such 

form of the loss of load carrying capacity as loss of 

stability. Namely in this connection the study of 

interaction of these processes, i.e. study of influence of 

fluid on stability parameter and oscillations of thin 

shelled laterally strengthened structural elements, 

especially on the frequency of parametric oscillations. 

The papers [1-3] were devoted to detection of some 

aspects of interaction of damageability of a medium on 

the process of oscillations of smooth thin shelled 

constructions. Stability and oscillations of thin shelled 

strengthened structural elements taking into account the 

phenomenon of damageability of the material of the 

construction were studied in the papers [4-7]. The papers 

[8-11] devoted to definition of stress-strain state of ribbed 

shells contacting with solid and fluid media should be 

also noted. In the papers [8, 9], by means of the 

asymptotic method, frequency equations of ribbed fluid-

filled cylindrical shells were constructed; approximate 

frequencies of the equation and prime calculation 

formulas allowing to find the values of minimal eigen 

values of oscillations of the system under consideration 

were obtained; forced oscillations of a strengthened, 

fluid-filled shell were studied and amplitude-frequency 

characteristics of the considered oscillatory processes 

were determined. 

  

II. PROBLEM STATEMENT 

In the present paper, by means of the variation 

principle, we solve a problem of parametric oscillation of 

a laterally strengthened, damaged, viscous fluid-filled 

cylindrical shell under action of the external pressure 

0 1 sinq q q t   (where 0q  is the mean or basic load, 

1q is the amplitude of change of the load, *  is the 

frequency of its change). Based on the Ostrogradsky-

Hamilton variation principle, we construct systems of 

differential equations with respect to the amplitude of 

displacements of a laterally strengthened, damaged 

viscous fluid-filled orthotropic cylindrical shell and 

realize them numerically. The surface loads acting on a 

laterally strengthened shell as viewed from fluid, are 

determined from the solutions of Navier-Stock’s 

linearized equation.  

One of the experimentally confirmed theories of 

damageability is the hereditary theory of damageability 

developed for compound stress state in [12]. According to 

this theory the determining equations for a homogeneous 

body ( x  is the vector-coordinate of the body’s point) are 

written in the form: 
*

ij ij ijM      

where, E  is the Young modulus, 
*M  are hereditary type 

integral operators describing damageability processes and 

for which it hold the representation: 
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where, ( , )M x t   is a damageability kernel;  
kk tt ;  are 

the intervals of active stress periods contributing to rate 

of damageability; )( 
ktf  is a defects healing function 
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dependent on damageability volume accumulated for the 

given cycle. For example, the value 0)( 
ktf

corresponds to total healing of defects accumulated for 

the given cycle, the values 1)( 
ktf  to the absence of the 

defects healing effect. All intermediate values from zero 

to unit correspond to the effect of partial healing of 

defects. For determining the intervals  
kk tt ;  it is 

necessary to give special conditions. It is convenient to 

formulate them for a concrete problem taking into 

account specifics of a construction, its operation 

conditions and the kinds of loadings. In this paper we 

behave in this way and the similar conditions will be 

formulated below. 

Let us consider a laterally strengthened, annular cross 

section, viscous fluid-filled cylindrical shell of radius R , 

of thickness 2h , of length  . It is assumed that the ends 

of the shell are hingely supported, i.e. for ;0x  it 

holds:  

0; 0

0; 0

xx xxN M

w 

 

 
 

where, xxN  is axial force, xxM  is a bending moment, 

,w are the of the displacement vector components of the 

point of shell-flexure and radial displacement, 

respectively. 

Strain state of the shell may be determined by three 

components of displacements of its median surface ,u

and w . Therewith, the turning angles of the normal 

elements 21, with respect to coordinate lines y and x  

are expressed by w and by means of the dependences


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 21 , . 

For describing the strain state of ribs, in addition to 

three components of displacements of gravity centers of 

their cross sections ( jjj wu ,,   of the jth lateral bar) it is 

necessary to define the twisting angles kpj  as well. 

Taking into account that according to the accepted 

hypothesis it holds constancy of radial flexures along the 

height of cross sections, and also equality of appropriate 

twisting angles following from the conditions of rigid 

connection of ribs and shell, we write the following 

relations: 
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 (2) 

 where, 
10.5 ,j jh h H   h  is the shell’s thickness, 

1
jH  is 

the distance from the axes of the jth lateral bar to the shell 

surface, kpjj  ,  are the turning and twisting angles of 

cross sections of annular ribs.  

III. METHOD OF SOLUTION 

For solving the stated problem, Ostrogratsky-

Hamilton’s variation principle is used. According to this 

principle, true trajectories differ from other possible 

trajectories by the fact that for first ones the following 

condition should be fulfilled:   

 
1

0

0

t

t

K dt    (3) 

where, under K we understand kinetic energy of the 

system, under   the potential energy and W'  the sum 

of elementary works of external forces,  10 , tt  is the time 

interval at which the motion process occurs. 

It is accepted that the stress strain state of the 

cylindrical shell may be completely determined within 

linear theory of thin shells based on Kirchhoff-Lia 

hypotheses, and for calculating the ribs, theory of 

Kirchhoff-Klebsch curvilinear bars is applicable. The 

system of coordinates is chosen so that the coordinate 

lines coincide with principal lines of curvature of the 

shell median surface. The total energy of elastic 

deformation of an orthotropic, laterally strengthened, 

damaged cylindrical shell is in the form: 
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where, , , ,j zj yj kpjF J J J  are the area and inertia moments 

of the cross section of the jth lateral bar, respectively with 

respect to the axis Oz and the axis parallel to the axis Oy  

and passing through the gravity center of the cross 

section, and also it inertia moment at torsion; jj GE
~

,
~

 are 

elasticity and shear module of the material of the jth bar;

t is a time coordinate, j,  is the density of materials 

from which a shell is made, j is the lateral bar, zyx qqq ,,  

are presser vector components acting as viewed from 

viscous fluid. 

We represent the expressions for internal forces and 

moments as follows: 
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The stresses ij  and strains ij in the median surface in 

Equations (5) are determined as follows: 
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The surface loads yx qq ,  and zq  acting as viewed 

from viscous fluid on a laterally strengthened shell are 

determined from the solutions of Navier-Stock’s 

linearized equations: 
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where,   is a dynamic viscosity coefficient, p is pressure 

at some point of fluid, 0  is density fluid, *a  is sound 

velocity in fluid, 2  is Laplace’s operator,  zyx  ,,


 

is velocity vector of an arbitrary point of fluid. 

On the contact surface a shell-viscous fluid  Rr    it 

is fulfilled: 
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where the viscosity forces are determined by the qualities  
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Equation (6) by means of the continuity equation and 

equation of state arrives at the equation with respect to p : 
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We look for displacements vector components of the 

shell median surface in the form  
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where, CBA ,, are unknown functions. We accept these 

functions for the frequencies lying near 2/1/ *   in 

the form  

  112111 sincos tAtAtA    
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After separation of variables, equation (12), has the 

form: 
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
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where, nJ  is the first kind Bessel function of 𝑛order, 0p  

is a pressure amplitude. 

Using (14) and (7), we can determine the velocity 

components in fluid and by formula (10) the viscosity 

forces. Complementing by contact conditions (8), (9) the 

total energy of system (4) of fluid motion Equations (7), 

(1) and (2), we arrive at a contact problem on parametric 

oscillations of viscous fluid-filled orthotropic shell 

strengthened with lateral ribs. In other words, a problem 

on parametric oscillations of a viscous-fluid-filled, 

orthotropic cylindrical shell strengthened with lateral ribs 

is reduced to joint integration of total energy of the 

system and fluid motion equations subject to indicated 

conditions on their contact surface.  



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 25, Vol. 7, No. 4, Dec. 2015 

73 

Using (5)-(7), (12)-(14) and (3) the problem is 

reduced to a homogeneous system of sixth order linear 

algebraic equations  

 
1 1 2 2 3 1 4 2 5 1

6 2 0 1,2,...,6

i i i i i

i

a A a A a B a B a C

a C i

    
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 (15) 

The elements  6,..,3,2,1,...,,, 6321 iaaaa iiii  are of 

bulky form and we don’t cite them. The elements of 

nontrivial solution of the system of linear algebraic 

equations (15) of sixth order are possible only in the case 

when 1 is the root of its determinant. The definition of

1  is reduced to a transcendental equation, as 1  is 

contained in the arguments of the Bessel function nJ : 

0det ija  (16) 

Note that for 0  Equation (16) passes to the 

frequency equation of parametric oscillations of an ideal 

fluid-filled strengthened, orthotropic cylindrical shell. 

 

IV. RESULTS AND CONCLUSIONS 

Let us consider some results of calculations conducted 

proceeding from above dependences by means of ECM. 

For geometrical physical parameters characterizing the 

materials of a shell, fluid and lateral bars we accepted: 
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Figure 1. Dependence of oscillations frequency parameter on the 

number of lateral bars. The dotted line is a damaged shell; the solid line 
is a damageless shell 

 

The results of calculations are represented in Figure 1. 

It illustrates the dependence of frequency parameter on 

the number of lateral bars for different ratios of elasticity 

module. The results of calculations show that account of 

damageability of the shell material reduces to decrease of 

frequencies of eigen oscillations of the system in 

comparison with the case when a shell is considered as 

damageless. Furthermore, with increasing the ratio 
2

1

E

E
 

the frequencies of eigen oscillations of the system 

increase. With increasing the number of lateral ribs, the 

frequencies of eigen oscillations of the system at first 

increase, and then at certain values of 2k  began to 

decrease. This is explained by the fact that by increasing

2k the influence of inertia actions of bars on the 

oscillation process of the system becomes significant. 

 

V. CONCLUSIONS 

The results of calculation show that account of 

viscosity of fluid material and damageability of the shell 

material reduces to decrease of frequencies of eigen 

oscillations of the system in comparison when fluid is 

ideal, a shell is damageless. With increasing the ratio 
2

1

E

E

the frequencies of eigen oscillations of the system 

increase. With increasing the number of lateral ribs, the 

frequencies of eigen oscillations of the system at first 

increase, an then at certain values of 2k began to decrease. 
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