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Abstract- Demand side management programs in the 

restructured power system environment have been 

divided into two categories namely energy efficiency and 

demand response programs. The energy efficiency 

method improves efficiency and performance of the 

equipment. Demand response programs which were 

presented as multi-tariff system before restructuring, get 

more valuable in the competitive environment the exact 

modeling of these programs helps the market regulator 

for evaluating the impact of price responsive loads on 

electricity market conditions. It should be noted that 

demand response allocation is also very important in the 

power system studies. In this paper, according to the 

price elasticity of demand and customer benefit function, 

the non-linear economic models of responsive load are 

achieved. Moreover, in order to select the most suitable 

bus and the optimum scenario for minimizing the 

operation cost, total loss, Expected Energy not served 

(EENS), peak-to-valley distance and power factor 

improvement, multi-attribute decision making (MADM) 

method, so-called elimination and (et) choice translating 

reality (ELECTRE), is used. Numerical study is 

performed on the IEEE-RTS 24-bus. 

 

Keywords: Demand Response, ELECTRE, Elastic Load, 

Non-Linear and Economic Load Model, Costumer 

Benefit. 

 

I. INTRODUCTION 

DSM is a word which includes some concepts 

including demand side management, energy efficiency, 

and even increasing the consumed energy by electrified 

some non-electric systems [1]. In the restructured power 

system, demand side programs management are divided 

into two groups [2]: 

1- Energy efficiency programs 

2- Demand response programs 

Restructuring in the power systems lead to the 

invention of some new words beside DSM. For instance, 

demand response (DR), which includes some methods of 

DSM, can result in changing the energy consumption 

according to the energy price. Although these programs 

were applied in the conventional environments in term of 

multi-tariff meters, in the restructured environment 

demand side programs (DSP) became more important 

and many researchers were attracted to study in this filed. 

The global energy agency, presented a 5-year strategy to 

improve the demand side management methods in the 

conventional environments.  

The agency introduced 15 important projects 

(programs) that each of them can encourage the 

customers to participate in the electricity market and DR 

programs. The 13th program is related to the importance 

of using demand response resources [3]. Demand 

response programs are divided into two groups: 

1- Incentive-based programs (IBP) 

2- Tariff-base rate (TBR)  

The sub-branch of the aforementioned programs are 

given in follows: 

1- Tariff-based programs 

 Time of use programs (TOU) 

 Real time pricing programs (RTP) 

 Critical peak pricing programs (CPP) 

2- Incentive-based programs 

 Direct load control (DLC) programs  

 Interruptible/Curtailable loads (I/C) 

 Demand side bidding (DSB) 

 Emergency demand response program (EDRP) 

 Capacity market programs (CAP) 

The details of these DR programs can be found in [4]. 

In this paper, the time of use (TOU) programs are 

considered which are briefly explained. In these 

programs, the energy price is calculated for at least three 

times in a day including peak-load, base load and valley 

load times. This tariff can be calculated for different 

hours of a day or different days of a week or different 

times of a year. To evaluate the effects of DR programs 

on the operation and load profile attributes, modeling of 

the DR programs is a very important issue. In [5], some 

linear economic models of elastic loads have been 

presented. Since the customer benefit function is non-

linear, it is better to use the non-linear DR program 

models to evaluate the loads behavior more accurately. 

Maximizing the Dis Co's benefit function in presence of 

non-linear customer benefit function has been studied in 

[6].  
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In this paper, three non-linear models of elastic loads 

including power, exponential and logarithmic models, 

made based on the elasticity and customer benefit 

function, have been considered. Using the non-linear 

models has some positive effects on the power system 

operation attributes including operation cost, peak to 

valley distance, system loss, power factor, reliability 

indices, etc. Therefore, using ELECTRE determines the 

most appropriate scenario and the optimum model and 

bus to achieve the aforementioned effects. The rest of the 

paper is organized as follow. In section II, the non-linear 

modeling of demand response programs is explained. In 

section III, the system operation and load profile 

attributes are described.  The performance of ELECTRE 

method and its algorithm in a decision-making problem is 

discussed in section IV. The results of this study and the 

conclusions are given in sections V and VI, respectively. 

 

II. NON-LINEAR MODELING OF DEMAND 

RESPONSE PROGRAMS 

To model the DR programs, the demand which is 

denoted with d(i), depends on the electricity price and 

tariffs. As mentioned in the previous section, there are 

different models for demand response programs 

modeling, where, in this paper, all three models 

including, power, exponential and logarithmic methods 

are implemented.  

 

A. Power Model 

 

A.1. Single-Period Elastic Load Modeling 

Elasticity which is the sensitivity of demand to the 

prices is defined as follows: 

0
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where, P0(j) is the initial electricity price at hour j, and 

d0(i) is the initial demand at hour i. 

In (1), if i=j the elasticity is negative and if ji   the 

elasticity is non-negative. According to (1), if the 

electricity price increases at ith hour, the electricity 

demand will decrease at hour i, and the electricity 

demand will increase at hour i, if the electricity price at 

hour j increases. When the electricity price is different for 

different periods of time, demand will respond to it [7].  

Some loads are single-period elastic loads which 

cannot be served in another time period. These loads can 

be turned on or turned off at the specific time like 

lighting or they can respond to the electricity prices at the 

time that they have to be supplied. These loads have a 

self-elasticity and this value is non-positive for these 

loads. Another elastic loads are multi-period loads which 

can be supplied in the different time periods. In fact, 

these loads can be shifted in time from peak load times to 

the off-peak times like heating and cooling loads. These 

loads which can be shifted in time according to the 

electricity price of another time period, have cross 

elasticity. The value of cross elasticity is always non-

negative, because, when the electricity price is increased 

in a specific period of time, the electricity demand is 

increased in other time periods.   

A number of large loads like industrial loads may 

include both single-period and multi-period loads which 

have been considered as the combined-period loads. The 

customer benefit function is calculated using (2): 

( ( )) ( ).S B d i d i    (2) 

where, S is the customer benefit function, B(d(i)) is the 

income of the costumer at hour i, and d(i) is demand at 

hour i. The maximum benefit is obtained using (3): 
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Using the Taylor series of B(d(i)), the customer 

benefit function is obtained as follows [8]: 
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where, B0(i) is the customer benefit function at hour i for 

initial electricity price , p0 is the initial electricity price, d0 

is the initial demand, and B(i) is the customer benefit 

function at hour i for demand (d) and spot price p. 

By differentiating (4) and substituting in (3) the 

following equation is derived: 
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where, E(i,i) is the self-elasticity.   

For small value of elasticity, the second term in (5) 

can be ignored. In the real conditions, the elasticity has a 

value in a range of (-0.1,-0.2). Hence, the power model of 

the single-period loads is as follows: 

( , )
0

0

( )
( ) ( ).( )

( )

E i ii
d i d i

i




  (6) 

 

A.2. Modeling of Multi-Period Elastic Loads 

To model the multi-period elastic loads, firstly, the 

concept of cross elasticity should be described [9]. 

Hence, considering the aforementioned Equations (1-4) 

the model power model of multi-period loads for a 24-

hour period is as (7): 
24
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A.3. Modeling of Combined-Period Elastic Loads 

As mentioned in the previous sections, some loads 

may include both single and multi-period loads, where, 

they are known as combined-period loads. The power 

model of the combined-period loads with constant i in a 

period of 24-hour is as follows: 
24

( , )
0

01

( )
( ) ( ). ( )

( )

E i j

j
i j

j
d i d i

j






   (8) 

where, E(i,j) is the cross elasticity.  

In general, Equation (8) determines how much 

electricity should be consumed by customers to maximize 

the benefit. It is notable that the demand response 

programs in this study are time-based rate (TBR). In 

power form, E(i,i) is constant for all price and loads. 

Therefore, this form is known as constant elasticity 

model. 
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B. Exponential Model 

 

B.1. Single-Period Elastic Load Modeling 

In the exponential form, the costumer benefit function 

is obtained by extending the Taylor series of B(d(i)) as 

follows [19]: 

0 0
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The above equation is not defined for zero-loads and 

zero-elasticity loads. By differentiating the above 

equation and substituting in (3), the exponential form of 

single-period elastic load is obtained: 
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B.2. Multi-Period Elastic Load Modeling 

According to what was explained in modeling of 

power form of multi-period elastic loads, (11) is derived: 
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B.3. Combined-Period Elastic Load Modeling 

In the exponential model, the combined-period load 

model, considering the constant i and a 24-hour period, is 

obtained from (10), (11) as follows: 
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C. Logarithmic Model 

 

C.1. Single-Period Elastic Load Modeling 

For the logarithmic model, the customer benefit 

function can be obtained using (13) [10]: 
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By differentiating the above equation, and substituting in 

(3), the logarithmic model of single-period elastic load is 

derived: 
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C.2. Multi-Period Elastic Load Modeling 

Using the definition of self-elasticity and cross 

elasticity and using (1), the logarithmic model of multi-

period elastic load can be calculated by (15): 
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C.3. Combined-Period Elastic Load Modeling 

In the exponential model, the combined-period load 

model, considering the constant i and a 24-hour period, is 

obtained from (14), (15) as follows: 
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III. THE UTILIZED ATTRIBUTE AND INDICES 

 
A. Operation Cost Attribute 

This attribute is obtained by solving the power flow 
equations in a 24-hour period, where, for each time, the 
operation cost is calculated and the total cost is the sum 
of costs in the whole time period.  
 
B. Loss Index 

Another index which is very important in the power 
system operation is loss index, and, loss reduction has 
always been one of the system operator concerns. Any 
changes in the power flow through the system can affect 
the system loss considerably. The mathematical model of 
loss index used in this study, is as follows: 

24
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where, Rpu is lth line’s resistance, and pl,t is the power 

flow through line l at time t. 

 
C. Load Factor 

The power factor (PF) index is calculated using the 
load curve in a 24-hour period. This factor is the most 
important factor from the viewpoint of the customer and 
its mathematical model is as (18): 

24

1
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( ).100
24.t

d i
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where, peak is maximum demand during a 4-hour period.  

 
D. Peak to Valley-Load Distance Attribute 

The DR programs in the most times reduce the peak 
to valley distance. This attribute is also calculated 
according to the 24-hour load curve. 

 

E. Reliability Index (Expected Energy Not Served) 

Expected energy not served (EENS) is considered as a 

reliability index in this study. This index refers to the 

amount of energy that the customers did not receive from 

the system due to the lack of power generation. This 

index can be calculated using (19): 

( ). ( ).out individualEENS C Reserve P Reserve t   (19) 

where, Cout is the amount of power out of the whole 

system power, which is not supplied during the 

contingencies, maintenance, etc. and Pindividual (Reserve) is 

the reserve probability. 

 

IV. ELECTRE METHOD 
In this method, all alternatives are evaluated using the 

outranking comparisons and the ineffective alternatives 
will be ignored. A pairwise comparison is done based on 
the degree of agreement (Wj) and degree of disagreement 
compared to the weighed values and it is used to test the 
alternatives. Since, all of these stages are done based on 
the concordance and discordance of the alternatives, this 
method is famous as concordance analysis. 
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A. ELECTRE Decision Making Algorithm   

Step 1: changing the decision making matrix D to a 

dimensionless matrix as follows: 

2

1

ij

ij
m

ij

i

r
n

r






 (20) 

Step 2: Making a weighted dimensionless matrix (V) 

using vector (W). It is notable that the entropy method is 

used in this study for weighting. 

Step 3: Determination of concordance and discordance 

sets for each pair of alternatives ( , 1,2,..., ;k l m l k  ). 

The available attributes are divided into two concordance 

(Skl) and discordance (Dkl) sub-sets. The concordance set 

of Al, Ak includes all attributes where, Ak is preferred to Al 

as follows: 

}{ ljkj rrjJ                                                           (21) 

where, rij is considered with the ascending benefit. 

Also, the discordance set Dkl, includes all attributes in 

which (1) is satisfied.  

 { }kl kj lj klD j r r J S     (22) 

Step 4: Calculating the concordance matrix: The value of 

the concordance set (Skl) is calculated by the available 

weights of the concordance attributes. In the other word, 

the concordance criterion is the sum of the weights (Wj) 

of those attributes which create the set Skl. Hence, the 

concordance criterion (Ik,l) between Ak and Al is as 

follows: 

, 1

   ,   1

k l

n

kl j j

j S j

I W w
 

    (23) 

The concordance criterion (Ik,l) shows the relative 

importance of Ak over Al such that ,0 1k lI  . 

The higher value of the Ik,l, the more priority of Ak over 

Al. Hence, the subsequent values of Ik,l criterion make the 

asymmetric matrix (I). 

Step 5: Calculating the discordance matrix: Discordance 

criterion (related to the set Dk,l) unlike the Ik,l criterion, 

indicates how much Ak evaluation is worse than Al. This 

criterion (NIk,l), is calculated using the elements of matrix 

V considering the discordance set Dk,l. It is important that 

the information of I and NI have some obvious 

differences and they complement each other, so, the 

matrix I reflects the weights of concordance attributes 

and asymmetric matrix NI reflects the biggest relative 

difference of .ij ij jV n W  for discordance attributes. 

Step 6: Determining the effective concordance matrix: 

The Ikl values of the concordance matrix should be 

evaluated by comparing them to a threshold value. This 

comparison is carried out to judge the priority chance of 

Ak over Al more accurately. This chance will increase 

when Ikl become higher than a minimum threshold ( I ), 

i.e. ,k lI I . The I  can be obtained using the average of 

concordance criteria as follows: 

,

1 1 ( 1)

m m
k l

k l

I
I

m m 




  (24) 

According to I  (minimum threshold), a Boolean 

matrix F is made so that: 
if

1kl klf I I    

if
0kl klf I I    

Then, each element in matrix F with value 1 (effective 

concordance matrix) is an effective alternative and 

dominates the other ones.  

Step 7: Determination of the effective discordance 

matrix: The klNI  elements of the discordance matrix are 

also evaluated to a threshold value like step 6. This 

threshold value can be calculated as follows: 

,

1 1 ( 1)

m m
k l

k l

NI
NI

m m 




  (25) 

Then a Boolean matrix G, an effective discordance 

matrix, is made so that: 
if

, ,1k l k lg NI NI    

if
, 0k l klg NI NI    

The elements of matrix G with value 1, indicate the 

dominance relations among the other alternatives.  

Step 8: determination of the global effective matrix: The 

common elements (hk,l), which create the global matrix H, 

are derived using the two matrixes, F and G, as (26):  

, , ,.k l k l k lh f g  (26) 

Step 9: Ignoring the non-effective alternatives: the 

effective alternatives can be extracted from matrix H, in 

the way that each column of matrix H which has one 

element with value 1 can be omitted because that column 

is dominated by one or more rows.  

 

V. CASE STUDY AND RESULTS 

The IEEE 24-bus RTS test system has been chosen to 

implement the proposed method. One of the importance 

of this system is the large scale of this system which is 

close to the real power systems. Hence, the results of 

studies on this system can be developed to the real 

systems [11]. The single line diagram of this system is 

given in Figure 1, and the data related to the elasticity is 

given in [12]. 

 
 

 
 

Figure 1. Single line diagram of IEEE 24-bus RTS system 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 26, Vol. 8, No. 1, Mar. 2016 

5 

As mentioned before, the considered DR programs in 

this study are time-based rate programs (TBR). For these 

programs, four scenarios have been considered and the 

best scenario and model and the best bus will obtained 

using the proposed method. 

 

A. The First Scenario 

In this scenario, the electricity spot price of each bus 

is related to the locational marginal price (LMP) of that 

bus, and its value is 0.5×LMP for valley-load times, LMP 

for base load times, and 2×LMP for peak-load times. The 

elasticity is the same as what was stated as Table 1 and 

the customer's participation in these programs is two 

percent. 

 
Table 1. Self and cross elasticity 

 

 Valley load Base load Peak load 

Peak load 0.012 0.016 -0.1 

Base load 0.01 -0.1 0.016 

Valley load -0.1 0.01 0.012 

 

B. The Second Scenario 

In this scenario, the spot price of each bus and the 

percentage of customers participation in the DR programs 

is the same as scenario 1, but, the elasticity is two times 

of that was in scenario 1.   

 

C. The Third Scenario 

In this scenario, the spot price of each bus is 

dependent on its LMP at valley, base, and peak load 

times. The value of spot price for valley-load time is 

0.25×LMP, LPM for base-load times, and 4×LMP for 

peak-load times and the elasticity and customer 

participation is the same as scenario one. 

 

D. The Forth Scenario 

In this scenario, the spot price for each bus and the 

elasticity is the same as the first scenario, but, the 

customer participation in the DR programs is 4 percent.  

The IEEE 24-bus RTS system has 17 load buses and 

for each of these buses, four scenarios should be 

considered and for each scenario, four models including 

linear, power, exponential and logarithmic models should 

be implemented. Finally, the optimum model and 

scenario and the best bus is selected. Therefore, the 

different priorities are obtained by implementing each 

scenario on each bus. Since the number of choices are 
very large and all of them cannot be shown in the paper, 

the results of bus 1 is just given here. Figures 2 to 4 show 

the priorities of the different scenarios including 4 models 

from the independent system operator (ISO), Utility, and 

customer viewpoints. 

Different scenarios have been shown in the Table 2, 

and the results of the optimum scenario and model and 

the initial weights are given in the Table 3. The indices 

weights from different viewpoint has been carried out 

using entropy method, and the related results are given in 

the Table 4 and the best results of modified weights from 

different viewpoints are given in Table 5.  

VI. CONCLUSIONS 

In this paper, some non-liner economic models for 

responsive loads based on the elasticity and the customer 

benefit function were implemented. By implementing 

these method, many attributes of the power system 

operation and load profiles including load curve, 

operation cost, system loss, power factor, valley to peak 

distance, and EENS may change. But, as mentioned in 

the results section, these variation are not always in a 

positive way.  

Improvement of these factor and attributes depend on 

the appropriate allocation of DR programs, and selecting 

a proper model for DR programs as virtual resources in 

the power system. In the other words, in this paper in 

addition to extracting the non-linear model for the 

responsive loads, the importance of optimum allocation 

of virtual resources and choosing the optimum model has 

been considered. The results of this study, which carried 

out on the IEEE 24-bus RTS system, showed that the 

proposed method has some appropriate and considerable 

effects on the different attributes and it is favorable from 

different system viewpoints to be implement in the real 

power systems. 

 
Table 2. The results of different scenarios including various models 

 

S
cen

ario
 

P
ro

g
ram

 

Model 

E
lasticity

 

Electricity price 

P
articip

atio
n

 

p
ercen

tag
e 

1 TOU 

Linear 

Power 

Exponential 

Logarithmic 

Like 

Table 1 

Price Time 

20 

0.5×LMP 
Valley 

load 

LMP 
Base 

load 

2×LMP 
Peak 

load 

2 TOU 

Linear 

Power 

Exponential 

Logarithmic 

Two times 

of  

scenario 1 

0.5×LMP 
Valley 

load 

20 LMP 
Base 

load 

2×LMP 
Peak 

load 

3 TOU 

Linear 

Power 

Exponential 

Logarithmic 

The same 

as  

scenario 1 

0.25×LMP 
Valley 

load 

20 LMP 
Base 

load 

4×LMP 
Peak 

load 

4 TOU 

Linear 

Power 

Exponential 

Logarithmic 

The same 

as  

scenario 1 

0.5×LMP 
Valley 

load 

40 
LMP 

Base 

load 

2×LMP 
Peak 

load 
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Figure 2. Priority of scenarios on the number one bus  

(customer point of view) 

 

 
Figure 3. Priority of scenarios on the number one bus  

(utility point of view) 

 

 
Figure 4. Priority of scenarios on the number one bus  

(ISO point of view) 

 
Table 3. Initial weights 

 

Indices 

Valley-

peak 

distance 

Power 

Factor 
Loss 

Operation 

cost 
EENS 

Initial 

weights 
0.0492 0.0029 0.0032 0.0006 0.9442 

 

Table 4. Indices weights from different viewpoint 
 

Viewpoint 

Valley-

peak 

distance 

Power 

Factor 
Loss 

Operation 

cost 
EENS 

ISO 0.0334 0.002 0.0011 0.0004 0.9631 

Utility 0.1122 0.0106 0.0073 0.0079 0.862 

Customer 0.0491 0.0058 0.0016 0.0003 0.9432 

 

Table 5. The best model from all viewpoints 
 

Model Scenario number Bus number 

Power 1 2 
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