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Abstract- Theory of thermomagnetic waves in 

anisotropic conductive waves is conducted. Frequency 

and grows of the waves are calculated. Intervals of the 

changes in electrical conductivity at which unstable 

waves are generated inside the anisotropic conducting 

medium without an external magnetic field are defined. 
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I. INTRODUCTION 

In the articles [1, 2, 3] it has been proven that 

magnetic field is generated by non-equilibrium plasma 

with thermal gradient. Plasma with a thermal gradient 

T , in contrast to a conventional plasma, creates waves.  

Plasma with waves is completely different from a plasma 

at equilibrium. The thermomagnetic longitudinal waves 

occur in such plasma even in the absence of an external 

magnetic field and absence of hydrodynamic motion.   

Only the magnetic field varies in these waves. When 

there exist a constant external magnetic field 0H , the 

wave vector of thermomagnetic waves is perpendicular  

to 0H  and lies in the  plane of ( 0H , T ).  

The Alfven wave splits into two magneto-

hydrodynamic waves and the vectors V  and H   are 

perpendicular to the vector T . The magnetosonic wave 

spectrum changes.  In this case, thermomagnetic wave 

propagation speed is close to the speed of the sonic wave. 

The magnetic field propagates in the direction of the 

thermal gradient.  

Plasma with T  constant is considered. It is 

assumed that at distance 
T

L
T




 temperature variance is 

very little.  If pressure P = constant then plasma at such 

T  can be regarded as stationary, i.e. 
T

T





 
  (where 

  is density of plasma). If small magnetic field is 

created in this plasma, Ω <<1, (Ω=
eH

mc
 electron Larmor 

frequency, 1/ - electrons collision frequency). 

 

II. BASIC EQUATIONS 

In electric field E  and T  is velocity of 

hydrodynamic motion ( , )V r t , the density of electric 

current is calculated as shown below [1]. 
* *j E E H T TH              

 (1)  

where, 

*    ,   >0
VH T n

E E e
C e n


   (2) 

and n is concentration of electrons. 

From Equation (1) the electric field E  can be 

determined by the vector equation below. 

y ba y  
   (3)                                             

where, y  is  unknown vector.  

From Equation (3),   

 
[ ] 0

aby b

b by

  



   (4)                  

In expression [ ]by  we put y  from (3)                          

 

 

2

2

,

,

1

a a

b b

a a a

y b b b y

b b y by y

b b b
y

b

      
    

    
  

  
 




 (5)               

Using equation 
4

jH
c


  from Equations (5) and (1) 

we can obtain the below expression for electric filed E .  

2

, rot
4

rot ,
4

VH
E T H H

H

c

c

c T
TH

e



 



 
        

 
     


 (6) 

 where, 



  , 

  



 
  ,   is electrical 

conductivity,   is differential term,   is Hernst-

Ettingauzen dimensionless coefficient. 
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.rot
H

c E
t


 


 (7)  

Inserting in Equation (6),  

2

2

rot ( rot ),
4

rot
4

H c
V c T H H

t

c T
H T

e







 

  
        


   

 (8) 

Equation (8) defines the magnetic field during 

hydrodynamic motion in plasma at thermal gradient .T  
Analytical solution of equation (8) was described in detail 

in the work [1]. In [2-3] thermomagnetic waves in solid-

state plasma were analyzed, the frequencies of transverse 

K T  and longitudinal  // K T  the magnetic waves 

in homogeneous conducting medium were calculated. In 

[4, 5, 6] the thermomagnetic waves were theoretically 

investigated in isotropic conducting medium.  

Clearly, in anisotropic conducting mediums (metals 

and semiconductors) the thermo-magnetic waves in 

different directions of crystal will be spread over with 

different frequencies. In case of anisotropic conducting 

medium, direction and values of alternating magnetic and 

electric fields created in different directions and changing 

with respect to thermal gradient will affect the 

frequencies of the thermomagnetic waves. 

The frequencies of the thermo-magnetic waves 

depend on values of conductivity tensor σik for different 

directions of the Hernst-Ettingauzen tensor  . The aim 

of our work is investigation of the condition of 

occurrences and frequencies of thermomagnetic waves in 

anisotropic electronic-type conducting mediums. 

It is required to write the above described system of 

equations in tensor. We show the dependence of electric 

field on current density in isotropic medium as: 

 

 

,

E j jH

jH H H

T H

T

H

 



    

       

  

  (9) 

or 

1 2 3 4 5E E E E E ET       (10) 

where, 1E  is electric field changing in direction of 

current j , 2E  is electric field changing perpendicular to 

direction of current j  and magnetic filed H , 3E  is 

electric filed changing in direction of current j  and 

magnetic field H , T  is electric filed changing in 

direction of thermal gradient, 4E  is electric filed 

changing perpendicular to direction of thermal gradient  

and magnetic filed H , 5E  is electric filed changing in 

direction of thermal gradient  and magnetic filed H ). 

In anisotropic medium the Equation (9) depending on 

directions and in tensor form is written as follows: 

 

 

i im m im im m
m

im im im m
m

m

E j H

T
TH T

jH jH

H H
x

        


       

  (11) 

When external magnetic filed 0 0H  , if in  Equation 

(11) tensors im
 , im , im  and T  = constant, then 

tensor im  is zero. Combining the equations of Maxwell 

and (11) we will receive the following system of 

equations: 

1
rot

4 1
rot

i im m im
m

E j TH

H
E

c t

E
H j

c c t





       


 




  



 (12) 

If the variables are being changed as monochromatic 

wave, (i.e. ,E H  ~ ( )ei kr t ) the system of Equations 

(12) becomes as system shown below. 

2

4 4

i im m im
m

i m
m

E j T

i

H

k k
c i

j E E





 

       

     
  

 (13) 

where, ω is frequency of the wave, and k  is wave vector 

of the wave. 

Form Equation (13), we can find alternating electric 

filed iE  

2 2 2 2

   ,   
4 4

il e m im

i mie
e

m

A K K B

E Ec T
K

x

ic c k
A B i

 





 

  
     
  


 

 (14)                               

In Equation (14), m imE E   and; 

1,

0,
im

i m

i m


  


 

Considering above, we receive the below equation in 

tensor form, 

  0im im iN E    (15) 

ie
im il e m im e

m

c T
N A K K B K

x
 



 
  


 (16) 

To satisfy the system of Equations (15) determinants 

must be  - 0im imN d  . 

To solve the dispersion Equation (16), it is necessary 

to select a coordinate system. We select the below 

coordinate system: 

2 3

1 2 3

    0

0  ,  0  ,  0

  ,  ik k k k

T T T

x x x

  

  
  

  

  (17) 

Using (17) we receive the following dispersion 

equation 
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     

 

   

11 22 33

21 13 32 12 23 31 13 31 22

32 23 11 21 12 33

1 1 1

1

1 1 0

im imN N N N

N N N N N N N N N

N N N N N N

     

    

    

 (18) 

where, 
2 2 2

12 11 12
11 11 12

2 2 2
13 13 21

13 21

2 2 2
22 22 21

22

2 2 2
23 23

23

   ,  
( )

4 4

( )

4 4

( )

4

 

  ,   

(

 

)

4

 

i c ki
N N

i c k i
N N

i c k
N

i c k
N

   


  

   

  

   

 

  

 

  
  


  

 
 


 

 

2 2 2
31 32

31 32   ,   
( )

4 4

i i c k
N N

  

 


   (19) 

2 2 2
33 33

33

( )

4

i c k
N

  

 


   

11 11 2 12 12 1 13 13 1

21 21 2 22 22 1 23 23 1

33 33 1

 ,  , 

 ,  , 

ck T ck T ck T

ck T ck T ck T

ck T

  

  



             

             

   

Substituting (19) to (18), we receive the below dispersion 

equation 
6 5 4 3 2

1 2 3 4 5 6 0 0

0,1,2,3,4,5,, ( 6)i i

            



      


 (20)   

Dispersion Equation (20) can be solved by values i  

depending on parameters (19). 

It is clear that such solution is mathematically 

impossible. Therefore, we will solve the Equation (20) by 

the following physical method. It is clear that values of 

tensor Nik will determine analytical expressions of 

frequencies obtained from solution of this equation. 

Tensor Nik depends on the tensors ik  and ik
 .  

Tensors ik  and ik
  are values of anisotropic 

conducting medium in different directions. Infinite 

tensors Nik have a specific numeric value at certain values 

of ik  and ik
 . Such values of the tensor Nik are non-

zero and different. We seek solution of Equation (18) at 

below values of Nik, 

1 23 33

13 23 33

1N N N

  

  

 
 (21) 

In N33 =1, considering 0 ij   ,  

0 33
33 0

2 2 2 2
0 33

2

( )

4

c k

 
  



  




 

 


 (22) 

From (22), we receive 

33

0 33 33

2 2 


  
   (23) 

4 2 2 2 2 2 2 2 2
0 33 33 0 33(4 ) 4 0c k           (24) 

By entering real part of the frequency 0  obtained 

from Equations (24) into (23), we receive condition of 

instability of waves with a frequency 0  as such  

33 0   (25)   

As can be seen from Equation (24), the values of 

infinite parameter 33ck  dramatically changes the 

frequency 0 . Denoting 33ck r  , we consider the 

below conditions: 

(1) 2r   (26)  
1/2 1/2

33
0 3/2

33 33 33

2 1 2
1 1




   

    
      

    
 (27) 

3/4
33

2 1
1

2






 
  

 
 (28) 

It can be seen from (28) that wave with frequency 

(27) is a damped wave. It means that when 2r   

instability do not exist. Substituting (29) to (24) 

(2) 2r   (29) 
1/2

33
0

33

2




 
  
 

 (30) 

 
1/2

1/2

33
33

1
ck

ck 


  
    
   

 (31) 

From (31) it can be seen that when 33 ck   then 

0   and the wave with frequency 0  is instable. 

(3) 2r   
1/2

2 2 2
33

0
33

2

2

c k




  
   
   

 (32)  

1/2

33

33 33

2 2 


 

 
  
 

(33)                              

From (33) it can be seen that instability is created 

when 33 33 2 .    Instability of waves generated under 

conditions 1, 2, 3 in conducting medium depends on 

inverse value of conductivity tensor ik  and the Hernst-

Ettingauzen coefficient ik
 .  

Under conditions 2 ,r   2 ,r   2r   the values 

of conductivity in different directions if condition (21) is 

satisfied will be defined from the equation of dispersion 

(18). From (21) and (18) we receive:  

21 22 11 22N N N N    (34)  

If we input expression of tensor Nik from (19) to (34), 

we receive below connections between values of 

conductivity tensor at different directions:  

21 12 11 22

11 22 21 12

     

       
 (35)  

2 2
2 2
0

2

c k
    (36) 

If we put 0  and   in (36), under 2 ,r   2 ,r   

2r   analytical expression of 33  is as following:  
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2

33
33 2 2

33

33

3/4

33

33 33

2
( 2 ) 1 1

2
( 2 )

2
( 2 )

1

2

ck
r

c k

r
ck

r
ck


 




 


 

 

 
           

 

 



 (37)  

where, sr  is the stator resistance, s1L  and mL  are the 

leakage and magnetizing inductances 1

3

2
mss sL L L   

and m  is the amplitude of the flux linkages established 

by the permanent magnet. 
 

 
 

Figure 1. The variation of frequency0 

 

 
 

Figure 2. The variation of increments  

 

As can be seen from the graphs of frequency 0  and 

increments  , although the frequency of the generated 

wave is at its highest at values of infinite parameter r  less 

than 2 , the wave is a damping one. 

This means that the waves created in one local point 

of the crystal is rapidly damped and the charge 

distribution inside the crystal is homogeneous. At 

intervals 2 ,r   2r   the waves are instable and the 

charge distribution is non-homogeneous. 

 

III. CONCLUSIONS 

In anisotropic conducting mediums in absence of 

external magnetic field alternating magnetic field occurs 

due to thermal gradient. The waves in medium with 

alternating magnetic field and electric filed generated due 

to thermal gradient are of electromagnetic and 

thermomagnetic character. The wave vectors of such 

waves are either parallel to thermal gradient  // K T  or 

perpendicular to thermal gradient K T . However the 

wave vector always lies in plane of  T  and magnetic 

field. 

Depending on electrical conductivity in plane of 

anisotropic medium, the expression of wave frequency 

which depends on values of ik ikr ck  (where ck is 

acceleration,   is inverse value of conductivity) show 

that intervals of increase and decrease (instability) of 

waves exist. 

Graphical analysis of wave frequencies and 

increments at different values of parameter ik ikr ck  is 

provided. The waves generated at specific ikr  are 

thermomagnetic. Solution of the dispersion Equation (18) 

under conditions (21) is provided. However if the 

conditions (18) are changed then analytical expression of 

the wave frequency and grows that have been received 

from equation (20) will also change.  

These changes can occur only at tensor ik , i.e. at 

electrical conductivity ik  of the infinite tensor ikr . This 

may be balanced by rotating the anisotropic crystal 

thermos-recombination waves extrinsic semiconductors 

with two types of charge carries. 

In various experimental conditions, these impurity 

centers are more or less active, so the recombination and 

generation proceed generally via a certain number of 

impurity centers. For example, in experiment [6] (we will 

use its results), singly and doubly negatively charged Au 

centers in Ge were active centers.  

In the presence of an electric field, electrons and holes 

gain energy on the order of 0eE   (where e is the 

positive elementary charge) due to the electric field. 

Therefore, in the presence of the electric field, electrons 

can overcome the Coulomb barrier of the singly charged 

center and be captured. Electrons can also be generated 

owing to thermal transitions from impurity centers to the 

conduction band.  

The number of holes increases due to the capture of 

electrons from the valence band by impurity centers, and 

decreases due to the capture of electrons from impurity 

centers by holes. The probability of charge carrier 

generation and the probability of charge carrier 

recombination are different, and it leads to the change in 

concentrations of electrons and holes in semiconductors.  

A detailed description of kinetic equations for 

electrons and holes in above-mentioned semiconductor 

were given in paper [7]. These equations are of the 

following form:     

1
div (0)

( )

rec

n
j n N

t

n
E n N

t







   



 


 



 
     

 (38) 

0

0
0

1 0

constN = N N =

n N
n =

N

 








 (39) 

where, 0N  is a total concentration of the singly 

negatively charged centers N and the doubly negatively 

charged centers N , and 1n   is a characteristic 

concentration found on condition that  
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0 0E  , 0
rec

n

t

 
 

 
 (40) 

1

0 0

1
0

div ( )

(0)

rec

n
j E n N

t

n
n N

t

n N
n

N






  


  

 



  



 
   

 



 (41) 

 

In Equations (38)-(41), (0)  is the coefficient of 

electron emission by the doubly negatively charged 

centers in the absence of electric field, ( )E  is the 

coefficient of electron capture by the singly negatively 

charged centers, and (0)  is the coefficient of hole 

capture by the doubly negatively charged centers. 

The variation in the doubly negatively charged traps 

with time determines the variation in the singly 

negatively charged centers. Therefore, the equation 

determining the variation in charged centers with time is 

of the form:    

rec rec

N n n

t t t

       
    

     
 (42)  

In order to obtain the ( )k  dispersion relation, the set 

of Equations (38)-(42) must be solved simultaneously, 

taking into account the Maxwell equation  

.rot
H

c E
t


 


 (43) 

where с is the velocity of light.  

For this purpose, we linearize the Equations (5)-(10) 

in the following way:   

0E = E + E ; 0n n n    ; constT   

 ,E n   ~ ( )ei kr t  (44) 

0E E  ;  0n n    

where, k  is a wave vector, and   is the wave 

frequency. 
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