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Abstract- In the present paper we study geometrical 

nonlinear vibrations of a moving fluid-contacting 

functionally-graded cylindrical shell. Using the Hamilton-

Ostrogradsky vibrational principle, the finding of vibration 

frequencies of the considered system is reduced to the 

solution of the system of differential equations and is 

realized by the numerical method. 
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I. INTRODUCTION 

Functionally-graded materials are widely used in 

manufacturing numerous objects, in particular aerocosmic 

objects. The objects made of these materials re used in 

contact with high temperature media. Therefore, 

application of these constructions with regard to liquid 

medium is of great importance. Sometimes, it is necessary 

to strengthen the mentioned constructions. The problem of 

vibrations and stability of shells made of functionally-

graded materials ignoring the influence of liquid medium 

found their solutions [1-6]. The reference [7] deals with 

geometrical nonlinear vibrations of a rectangular plate 

made of functionally-graded material. The reference [10] 

was devoted to study of linear vibrations of a functionally-

gradient shell. 

 

II. PROBLEM STATEMENT 

Let us consider a fluid-contacting cylindrical shell 

made of mixture of ceramics and metal. As in the reference 

[10] it is assumed that the fraction of ceramic material in 

the total volume changes by the law:  
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where, h  is the shell’s thickness, k  is the power index of 

the fraction of the ceramic material in the volume and 

0 k   . If 0k  , the structure of the shell consists only 

of ceramics, if k   , will consist of metal. We will 

assume that mechanical characteristics of materials (the 

Young modulus, density, etc.) change by the following law 

[4, 5]:  
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where, the coefficients 0 1 1 2 3, , , ,P P P P P  are specifically 

defined for each material. The values of these coefficients 

for some materials were given in the papers [1, 4, 5]. The 

mechanical properties of the mixture consisting of two 

parts are determined by the following formula:  
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 (2) 

By Equation (2) we can calculate the elasticity 

modulus E  of the mixture, the Poisson ratio   and density 

 , where,  cP T  and  mP T  are the characteristics of 

ceramics and metal.  

The system of motion equations of medium-contacting 

composite cylindrical shell is found from the stationarity 

condition of Hamilton-Ostrogradsky action: 

0W   (3) 

where, 
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W Ldt   is Hamilton’s action, ΠL K   is the 

Lagrange function, 't  and ''t  are the given any moments 

of time. The potential and kinetic energies of the system 

are as follows: 
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where, 
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In Equation (4), we have:  
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Cutting forces xQ  and yQ  are determined from the 

expressions 2
33 13x SQ K A   and 2

33 23y SQ K A  . The 

coefficient 2
SK  is called the regularizing coefficient. In the 

calculation process we accept 2 5

6
SK  . 0A  is the inverse 

sign work done by pressure force p  on the shell in 

displacement w  of the shell. Pressure force p  is 

determined from the motion equation of ideal fluid moving 

with velocity U : 
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 (5)    

In shell-fluid contact, in radial direction the equality of 

velocity and pressure is satisfied:                        
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Look for the   as potential of perturbations in form: 

   1, , , cos sin sinr t f r n kx t      (8) 

where, ,  n k  are wave numbers in the direction of 

coordinate axes,   is an unknown frequency,  f r  is an 

unknown function. Using Equations (6), (7) and (8): 
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where,  
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In Equation (10) 1
0

/U m
M

a


 ,   2 2 2 2

11 ,R M  

 2 2 2 2
1 1 1R M   , nJ  is the first kind nth order 

Bessel function, nJ   is its derivative with respect to 

variable r , nI  is the nth order modified Bessel function, 

nI   is its derivative with respect to variable r , 0a  is the 

rate of sound propagation in fluid.  

Let us write total energy of a construction consisting of 

longitudinal ribs made of homogeneous metal [12]: 
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 where, iE   is modulus of elasticity of longitudinal ribs; 

iF  are the square of cross sections of longitudinal ribs; 

,yi kpiJ J  are the inertia moments of longitudinal ribs; iG  

shear elasticity modules of longitudinal ribs; , ,i i iu w  are 

displacements of the points of longitudinal ribs; ik  is the 

amount of longitudinal ribs.  

It is assumed that the rigid contact conditions between 

the shell and ribs are satisfied 
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where, 1
iH  is the distance of the axis of the ith bar from 

the surface of cylindrical shell, ,i kpi   are turing and 

rotational angles of cross sections of the bar and are 

defined by the displacements of the shell as follows:  
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We will accept that the cylindrical shell was highly 

supported, i.e. in the sections x=0 and x=L the following 

conditions are satisfied:  

1 10 ,  0 ,    0 ,  0u w T M                                    

where, 1 1,  T M  is the force and moment acting on cross 

section of the cylindrical shell. 

Using the stationarity condition of Ostrogodsky-

Hamilton action, if we realize the variation process in the 

equality 0W   and take into account arbitrariness and 

independence of variations ,u  ,v  w , we get a 

frequency equation of a cylindrical shell dynamically 

contacting with fluid.  

Thus, the solution of problem of geometrical nonlinear 

vibrations of a cylindrical shell dynamically contacting 

with fluid is reduced to integration of total energy of a 

construction consisting of a cylindrical shell with fluid-

filled inner domain.  

 

III. PROBLEM SOLUTION  

We look for displacements of the shell as follows: 
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where, 0 0 0, ,u w  are unknown functions, , n  are 

generator and wave number of the cylindrical shell in 

peripheral direction,   /x L  . 

Allowing for (13), (11), (4) substituting Equation (12) 

in (3), from the stationarity condition of Hamilton-

Ostrogradsky action, with respect to the unknown 

functions 0 0 0, ,u w  we get the system of second order 

differential equations. As the system is of bulky form, we 

don’t cite it here. If we look for the solution of this system 

in a first approximation in the form 0 1 sinu u t , 

0 1 sin t   , 0 1 sinw w t , we find the dependence 

between the sought-for frequency   and 1 1 1, ,u w . By 

means of this dependence we can construct the skeleton 

curve. In calculations for the parameters the following 

estimations [7] were taken:  
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The dependence of the ratio of frequency of nonlinear 

vibrations on the curvature of the shell is depicted in 

Figure 1. The dependence of linear frequency parameter 

/x c ch E  
 
on the power index k  of fraction of the 

ceramic material in the volume was given in Figure 2. As 

is seen from figure 1, as the shell’s curvature increases, the 

frequencies of nonlinear vibrations also increase. As the 

power index k  of the fraction of ceramic material in the 

volume increases, as is seen from Figure 2, the frequency 

of linear vibrations decreases. 
 

 

 

 

 

 

 

 

 

 
 

Figure 1. Dependence of frequencies of nonlinear vibrations of the 

system on shell’s curvature 
 

 

 

 

 

 

 

 

 
 

Figure 2. Dependence of frequencies of linear vibrations of the system 

on power index 

 

In Figures 1 and 2, curve 1 corresponds to account of 

influence of fluid on vibration process, curve 2 to no fluid 

cases. As is seen, account of the influence of fluid reduces 

to decrease of frequencies of natural vibrations of the 

system. Calculations show that natural vibrations of the 

system increase according to the increase of the number of 

longitudinal ribs.  
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