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Abstract- The proposed article examines free oscillation 

of the longitudinally reinforced, orthotropic, and 

heterogeneous in thickness cylindrical shell being in 

contact with the flowing liquid. Using the Hamilton - 

Ostrogradsky’s Variation Principle, the system of 

equations of motion is based on the longitudinal 

reinforcement, orthotropic, heterogeneous cylindrical shell 

being in contact with the flowing liquid. The heterogeneity 

of the shell material on thickness is taken into account, 

assuming that the Young’s modulus and the density of the 

shell material are functions of the normal coordinates. In 

the study of free oscillation of a longitudinally reinforced, 

orthotropic, heterogeneous cylindrical shell contact with 

flowing liquid, two cases are considered: (a) liquid inside 

the shell is in rest; (b) liquid inside the shell is moving at 

constant speed. The frequency equations are constructed 

and are numerically realized in both cases. In the 

computation process, linear and parabolic laws have been 

adopted for the heterogeneity function. Specific curves are 

set up.  

 

Keywords: Reinforced Shell, Orthotropic Shell, Variation 

Principle, Liquid, Free Oscillation. 

 

I. INTRODUCTION 

Resistance, oscillation, and strength analysis of thin-

walled elements of shell type structures, dealing with the 

environment play an important role in the design of 

modern apparatus, machinery and facilities. The shell is 

reinforced by different ribs to give them greater rigidity. 

Such structures may be in contact with the liquid and be 

subject not only to static loads, but also dynamic. 

However, the behavior of heterogeneous, thin-walled 

elements of structures with ribs, consideration of their 

discrete location, the effects of liquid are not sufficiently 

explored. Therefore, the development of mathematical 

models for the study of the establishment of the reinforced 

heterogeneous orthotropic shells, which are best suited to 

their work in dynamic loads, and their research on 

sustainability and variability as well as the choice of 

rational design parameters contact with fluids, are relevant 

tasks [1].  

It should be noted that the work [2, 3] is devoted to the 

study of the free oscillations of ribbed cylindrical shells 

filled with fluids. The influence of the number of ribs, their 

stiffness, the velocity of the fluid, the various mechanical, 

physical and geometric dimensions of the shell at the 

frequencies of their own vibrations and the optimization of 

the parameter of the circular ribbed cylindrical shell are 

studied.  

The reference [4-6] deals with the study of the 

parametric oscillation of the non-linear and heterogeneous 

straight bar in the viscoelastic environment, using the 

Pasternak contact model. The influence of the main 

factors-elasticity of the base, the damageability material of 

the bar and the shell, constraints of the shear factor from 

the frequency of fluctuations in the longitudinal oscillation 

characteristics of the bar points in the viscoelastic 

environment are studied. In all the cases studied, 

dependence of the dynamic stability zone of the rod 

vibrations in the viscoelastic environment from the 

structure parameters on the load-frequency plane.  

Reference [7] presents the results of a pilot study on the 

impact of reinforcing ribs and attached solids on the 

frequency and shape of free vibrations of subtle, 

structurally mixed shells. Frequency equations of ribbed 

cylindrical shells filled with fluid, approximate 

frequencies of the equation, and simple computational 

formulas to find the values of the minimum individual 

frequencies of the system reviewed were built using the 

asymptotic method and the forced fluctuations of the 

reinforced sheath, filled with fluid investigated and the 

amplitude-frequency characteristics of the reviewed 

oscillator processes defined in the reference [8, 9, 12, 13].  

By entering a parameter determining the optimal 

reinforcement, the parameters of shells reinforced by the 

cross system of edges and filled liquid were optimized, and 

the influence of the degree of compressibility fluid on the 

frequency of the free axisymmetric of the oscillations of 

ribbed cylindrical shells was investigated. 

 

II. PROBLEM STATEMENT 

The ribbed shell is considered to be a system consisting 

of its own shell and tightly connected to the edges of the 

rib contact. It is assumed that the hard-deformable state of 

http://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/Problem+Statement
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the shell can be fully defined within the linear theory of 

elastic thin shells, based on the Kirchhoff-Lyav 

hypothesis, and that the theory of curved bars Kirchhoff-

Clebsch theory is applied for the calculation of the ribs. 

The coordinate system is selected so that the coordinate 

lines are coincident with the main curvature lines of the 

middle surface of the shell.  

It also presumes that the edges are placed along the 

coordinate lines, and their edges, as well as the edges of 

the plating, lie in the same coordinate plane. It is also 

assumed that all edges form a regular system. The regular 

system of longitudinal and circular edges means a system 

in which the stiffness of all edges, their reciprocal 

distances equals, and the distances from the edge of the 

shell to the nearest edge equals the distance between edges.  

The deformed state of the hull can be determined 

through the three components of its middle surface 

movement ,u   and w . In this case, the rotation angles of 

normal elements 1 2,   regarding position lines y  and x  

expressed through w  and   using dependence 1 ,
w

x



 


 

2

w

x R




 
   

 
, where, R  is radius of the middle 

surface of the shell.  

It is noted that 10.5i ih H , where, h  is shell thickness, 

1
iH  is distances from axes, i  is longitudinal bar till the 

shell surface, ix  and iy  are coordinates of the lines of 

conjugation of ribs with a shell, and ,  i kpi   are angles of 

rotation and twisting of cross-sections of longitudinal 

rods.  

With regard to the external effects, it is assumed that 

the surface loads for the ribbed shell from the side of the 

liquid, can be reduced to the constituent ,x yq q  and zq , 

applied to the middle surface of the shell. 

Differential equations of motion and the natural 

boundary conditions for the longitudinally reinforced, 

orthotropic, heterogeneous cylindrical shell with fluid will 

be derived from the variation principle of Hamilton-

Ostrogradsky. This requires the prior record of the 

potential and kinetic energy of the system.  

To accommodate heterogeneity, the thickness of the 

cylindrical shell will be based on the three-dimensional 

functionality. There are different ways to take into account 

the heterogeneity of the shell material. One of these is that 

the Young’s modulus and the density of the shell material 

are accepted as normal coordinates  z :  1 1  ,E E z  

 2 2E E z ,  .z   Poisson's ratio is assumed to be 

permanent. In this case, the full power of the cylindrical 

shell is in the form of:  
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Considering (2) and (3) in (1), we can write: 
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Expressions for potential power of elastic 

deformation of i  the longitudinal ribs are as follows [10]:  
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The kinetic energy of the edges is written in the form:  
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In the Equations (4) and (6) iF , ziJ , yiJ , kpiJ  are 

area and moments of inertia of the cross section of  i  

longitudinal bar, respectively, relative to the axis  oz  and 

axis, parallel axis oy  and passing through the center of 

gravity of the section as well as its moment of inertia in 

torsion;  ,i iE G  are moduli of elasticity  and shear of the 

material of longitudinal  i  temporal coordinate t , and i  

is according to the density of the materials produced 

longitudinal rod  i .  

http://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/differential
http://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/equations+of+motion
http://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/the+prior
http://www.linguee.ru/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/Poisson%27s+ratio.html
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 The potential energy of external surface loads acting 

on the side of the ideal fluid applied to the shell is defined 

as the work performed by these loads when the system is 

transferred from the deformed state to the initial 

undistorted condition, and is presented as: 
2

0

0 0

L

zA q wdxdy



    (7) 

The total energy of the system is equal to the sum of 

the energy of the elastic deformation of the shell and 

transverse ribs, as well as the potential energies of all 

external loads acting on the side of the perfect fluid: 

 
1

0

1

k

i i

i

J V K A


      (8) 

where 1k  is the number of longitudinal ribs. Assuming that 

the primary velocity of the flow is equal to U  and 

deviations from this speed are small, use the wave equation 

for the potential of indignant speeds   by [11]:  

2 2 2
2

2 2 2 2
0

1
2 0U U

R ta t R

  


 

   
         

 (9) 

Full energy expression of the system (8), the equation 

of fluid motion (9) is supplemented by contact conditions. 

On the contact surface, the shell-fluid is observed to be the 

continuity of the radial velocities and pressures. The 

condition of impermeability or fluidity at the wall of an 

environment has a form [11]:  

0 1r r R
r R

w w
U

r Rt


 



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    
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 (10) 

The equality of radial pressure from the liquid to shell:  

z r R
q p


   (11) 

The frequency equation of a ribbed inhomogeneous 

shell with a flowing liquid is obtained on the basis of the 

stationarity principle of Hamilton-Ostrogradsky action:  

0W   (12) 

where, 

t

t

W Jdt





   is Hamilton’s action, t  and t  are 

arbitrary moments of time.  

Supplementing the full power of the system with 

contact conditions (8), equations of fluid motion (9) we 

reach to the problem of natural oscillations of a 

longitudinally supported heterogeneous orthotropic 

cylindrical shell with a flowing liquid. In other words, the 

challenge of its own fluctuations in the longitudinally 

orthotropic cylindrical shell with the flowing fluid is the 

joint integration of expressions for full energy of the 

system (8), equation of Fluid Motion (9) under the 

conditions (10) and (11) on the surface of their contact.  

 

III. PROBLEM SOLUTION 

Potential for indignant speed   we are searching in the 

form:  

   1 1 1, , , cos sin sinr t f r n t       (13) 

Using (10) from the condition (7) and (8) we have: 
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 2 2 2 2
1 1 1R M   , nI  is the modified Bessel function 

of the first kind , nn J  is Bessel function of the first kind 

n , and 
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We will search for the movement of the shell in the 

form:  

0 1 1

0 1 1

0 1 1

sin cos sin

cos sin sin

cos cos sin

u u n t

n t

w w n t

  
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 (16) 

where, 0 0 0, ,u w  are unknown constants; and , n  are 

wave numbers in the longitudinal and district directions.  

Using (4), (7) and (11) the task amounts to 

homogeneous system of linear algebraic equations of the 

third order. 

 1 0 2 0 3 0 0 , 1,2,3i i ia u a a w i     (17) 

where, the elements  1 2 3, , 1,2,3i i ia a a i   are unwieldy, 

so they are not listed here. The non-trivial solution of the 

system of linear algebraic Equations (17) is possible only 

if when 1  is root of its determinant.  Determination 1  

boils down to the transcendental equation, since 1  

included in the arguments of the Bessel function:  

0 ,    , 1,3ijdeta i j   (18) 

                                

IV. NUMERICAL RESULTS 

The frequency Equation (18) was solved numerically 

with the following initial data:  
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Two types of laws of variations in inhomogeneity are 

considered as 

Linear: 

  0 1i i
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Parabolic: 
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where  0 1,2iE i   is Young’s Modulus, and   is 

Parameter Heterogeneity. Note that, in linear law, the 

change 1  , at the parabolic change   is arbitrary.  

 

 
 

Figure 1. The dependence of the frequency parameter on the speed of 

the fluid: 1-linear law, 2-parabolic law 

 

The results of the calculation are shown in Figures 1 

and 2. Figure 1 shows the constraints of the frequency 

parameter 1  from the relative velocity of the flow *U  for 

different laws of heterogeneity variations in the shell 

thickness. It shows that an increase in speed leads to a 

decrease in frequency.  

It should be noted that * 0U   corresponds to rest 

fluid. Figure 2 illustrates the influence of the number of 

longitudinal ridge 1k  on the frequency parameters 1  

fluctuations in the system. It is clear  with the increase 1k  

frequency parameters 1  the oscillations of the system are 

increased at first, and then at a certain value 1k  begin 

decreasing.  Due to the fact that with the increase of 1k  rod 

weight increases and this results in a significant impact of 

their inertial properties on the fluctuation process. 

 

 
 

Figure 2. The dependency of the frequency parameter on the number of 

longitudinal edges: 1-Homogeneous shell, 2-linear law, 3-parabolic law 

 

The comparison of the graphs shows that the 

accounting for heterogeneity results in lowering the values 

of the system's own fluctuation frequencies compared to 

the same system when the shell is homogeneous. 
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