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Abstract- The process of wave propagation in deformable 

tubes is containing a liquid taking into account interaction 

with the environment differs significantly from the 

properties of the hydroelastic system when the tube is not 

fixed. An explanation of the phenomena which is 

extremely important, will be the presence of external 

surface effects. In the present paper, a periodic pulsating 

flow of an ideal incompressible fluid including a periodic 

pulsating flow of an ideal incompressible fluid in a thin-

walled elastic tube is described, taking into account 

viscoelastic external friction within the framework of a 

one-dimensional linear theory. 
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I. INTRODUCTION 

We give the main theoretical propositions of a one-

dimensional theory for a linearly elastic isotropic tube with 

an ideal fluid flowing in its cavity. Let to consider that a 

semi-infinite cylindrical tube is given which denotes by the 

dimensions of R and h, as its radius and thickness, 

respectively. The liquid is assumed to be homogeneous 

and incompressible, with the density of f. The viscosity 

can be neglected based on data of the velocity profiles, i.e. 

in large arteries [1]. The cylindrical tube can be 

approximately considered flat, i.e. the influence of 

viscosity is limited by thin boundary layers. The 

realization of the long-wave approximation, when the 

wavelengths are much larger than the diameter of the tube. 

In a one-dimensional model it is assumed that the flow rate 

 , ,u u x t  pressure  , ,p p x t  radial displacement 

 ,w w x t . Then the continuity equation has the form of 

2
0

u w

x R t

 
 

 
 (1) 

and the equation of motion is 

1
0

f

u p

t x

 
 

 
 (2) 

where,  0,x   is the longitudinal coordinate, and t is 

time. Taking 1w R  , we write the equation of motion 

of the tube 

 
* 2 21

Eh
h w

R
 


 


 (3) 

where   is the density of the wall material, E is the 

modulus of elasticity, and   is the Poisson ratio. Further, 

we assume that the quantity   consists of two types of 

stresses: hydrodynamic p, acting on the liquid side in the 

tube, and the voltage arising under the assumption that the 

surrounding external medium introduces additional 

viscoelastic stiffness v w
G

t




. Hence, by analogy with the 

hereditary theory of elasticity [2], for the operator vG  we 

write 
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Now taking into account equality (4), we rewrite 

Equation (3) in the form of 
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Thus, the closed system of hydroelasticity is described by 

Equations (1), (2) and (5). 

 

II. INITIAL EQUATION OF PROBLEM AND ITS 

SOLUTION 

Having Equations (1), (2) and (5) we reduce them to 

the solution of the integral-differential equation. With 

combining Equations (1) and (2), we find 
2 2

2 2

1 2
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 
 (6) 
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Calculating by Equation (5) and substituting the result 

obtained in (6), we have 
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We introduce the following notation 

 
2
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after a series of elementary transformations, we obtain the 

following integral-differential equation with respect to the 

deflection function w 
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The model used here generalizes the previously 

proposed ones and, in a number of cases, reduces to known 

ones. So taking in (8)   00 tG  we come to the case 

when the friction of the external medium is elastic. Taking 

0G  we reduce the influence of the environment. Then, 

acquiring dynamic effects, we obtain a formula for the 

propagation velocity of the Moens-Korteweg wave as 

0c c 


  

 

III. RESOLVING EQUATION 

We shall find the value of the deflection at which 

steady oscillations are possible. In this case, applying 

Fura’s method of separation of variables, we find the 

particular solution of Equation (8) in the form of [3] 

     , expw x t y x i t  (9) 

where,  is a given real value of the angular frequency, 

and y is in general, a complex position coordinate function. 

We first turn to the calculation of the integral term in 

(8). Due to Equation (9), having adopted t     and 

introducing the notation 

   0

0
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   (10) 

We get 
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where the primes denote the ordinary derivative with 

respect to the coordinate x. 

Finally, taking into account equalities (11) and (9) in 

Equation (8) and introducing into the considered 

dimensionless elastic rigidity parameter 

RG
g

E
  

After a reduction to the common time multiplier, we 

finally obtain 
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Analysis of the experimental data of the elastic module, 

Poisson's coefficients and densities for materials such as 

rubber, celluloid and water densities allows us to conclude 

that 1  , for the long-wave approximation, the first term 

in the denominator (12) is negligibly small 

2 2
0

2

hR
c    

These considerations allow us to conclude that the 

gravitational effects in the region of the cross section of the 

tube are small and Equation (5) is rewritten in the form 
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Thus, Equation (12), with sufficient accuracy, can be 

approximately replaced by the following 
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Writing the dispersion relation by means of equality 

 

2
2

2
0

1

1gc




 


 
 (15) 

we reduce Equation (13) to the form 
2 0y y    (16) 

 

IV. SOLUTION OF DISPERSION EQUATION 

Representing   with 
10  i  we express 

expression (15) as 
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2
2

2
1 00
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
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By the rule of extracting the square root of a complex 

number, we have 

0 1i     

where, 

0
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m a
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
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1
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
  
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Here, in turn, for brevity we introduce the notation 

   
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Equation (16) must be supplemented with boundary 

conditions 

  00 , 0y y y   at x   (19) 

We note that the value of the quantity 0y  will be 

determined in the future, assuming that the pressure p 

varies with the law 0x   

   00, expp t p i t  (20) 

Taking into account conditions (19) and (17), the solution 

of Equation (16) is written in the form 

 0 expw y i t x      (21) 

Now from Equation (13) we can directly obtain an 

expression for the pressure 
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By comparing relations (20) and (22), we obtain an 

expression for 0y  in the following form of 
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The equality obtained allows us to write down 

 0 expp p i t x      (23) 
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Using equality (2), it is easy to compute the function u 
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 (25) 

We note that, in view of the linearity of the problem, 

we are only interested in the real parts of the quantities (23) 

to (25). 

 

V. NUMERICAL IMPLEMENTATION 

First of all, you need to specify a difference core 

 0G t  . For qualitative analysis, we set this function as 

follows 

 0 0 constG g    

This equality makes it possible to determine   by 

Equation (10) as a function of 0g  and   with 

ik    

where, 1
0k g  .  

In this case 0 10,  k     and in place of (18), we 

have 
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when,  
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then, 
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c
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c
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
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Figure 1. The dependence of the velocity from the value of k 

 

Figure 1 shows dependence of the dimensionless 

velocity 
0 0 0

c

c c




  of the wave on the value of k, for 

different values of  g0, with the initial data of the problem: 

25 10
h

R

   and 0.5   which corresponds to the value 

0.067.   

 

VI. CONCLUSION 

The performed calculations allow us to formulate the 

following conclusions: 

1. With increasing k, the dimensionless wave velocity 

increases and for fixed k its value increases with increasing 

g0; 

2. With increasing k the damping increases; However, it 

decreases with increasing value of g0. 
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