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Abstract- The reactive power linearized model is 

proposed for the purpose of estimating bus voltage 

magnitudes and transmission line power flows. The 

proposed method is driven by a realistic non-conforming 

stochastic load model that is based on the quadrative 

power flow calculation formulation.  The load flows are 

computed from linearized models of these qualities with 

respect to the independent stochastic load variables. The 

method is validated via continuation load flow 

simulations in which problem is fully solved for 

incorporated compensator and without compensator 

power flow nonlinearities equations and operating 

constraints. The proposed method is demonstrated with 

the IEEE Reliability Test System.      

 

Keywords: Power Grid, Voltage, Reactive Power, Load 

Flow Design Method, Linearization Methods. 

 

I. INTRODUCTION 

The analysis of steady-state regimes is the basis for 

planning, operation and management of power grids 

(PG), the importance of which increases during the 

functioning of the system under the power energy market 

conditions.  

The load flow calculation is based on the solution of a 

system of nonlinear algebraic equations, describing the 

steady state. To solve these equations, various 

computational algorithms are proposed and developed, by 

means of which the methods for solving nonlinear 

algebraic equations, known in the references, are realized 

[1-5]. These methods are iterative and the effectiveness of 

their application depends on the complexity of the system 

under study. In this regard, all subsequent developments 

for the improvement of algorithms based on the use of the 

above methods are reduced to an acceptable 

simplification of models describing the steady-state 

regimes [6, 7].  

In this paper, we propose a method obtained by means 

of linearization of reactive power equations. The 

proposed method has the ability to quickly calculate the 

voltages on the load bus and the reactive power injections 

on the generator bus. Initially, the idea of linearization of 

reactive power equations was proposed in [8-10]. In this 

paper we propose a mathematical formulation of the 

method. 

 

II. SIMPLIFIED FORMULATION OF MODEL FOR 

CALCULATING REACTIVE POWER FLOWS 

The n nodal typical PG scheme is considered, in 

which the balance of reactive power in the i node, polar 

form and relative units is important: 
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In this equation, the number of unknowns depends on 

the node type: if node i is of type PQ, then the unknown 

are voltages, or if node i is of type PV, then unknown is 

qi. The phase angles of the voltages are the main 

parameters that can be pre-calculated by means of power 

flow of direct current. It should be noted that the DC load 

flow conductivity matrix differs from the full 

conductivity matrix in the Equation (1); in this latter case, 

in fact, the elements must take into account not only the 

longitudinal but also the transverse conductivity of each 

network element. 

Returning to the Equation (1), neglecting the 

longitudinal and transverse active conductivity and 

assuming Bi, k as reactive conductivity module of a 

typical element of the conductivity matrix, we obtain as: 
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If the base voltage is used as a relative value, the 

modulus of voltage can be expressed as a small variation 

with respect to 1:  
 

1j j    ,     1,...,j n   (3)  

 

Replacing and neglecting the value of the second 

order in Equation (3), we obtain the Equation (4). For 

each g of the generator node the  is known, here for 

 1,i g  we obtain Equation (5). 
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For each (n–g) load node, suppose for  1,i g n  , 

we obtain as follows: 
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where, 0
iq  is a known reactive power, damped by the 

load in the i node.   

Converting the n equation such that the first "g" are 

important for generator nodes and the remaining (n-g) 

important for load nodes, the system can be described as 

follows:  
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with i h g   and  1,h n g 
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with  1,i g  
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with  1,i g n   

Considering the Equation (7) as a product of second 

order, we obtain an unknown vector  
cc cR q   (13) 

which is a linear system (n-g) of equations with unknown 

variables cU  
1c cc cR q   

 
(14)  

The previous equation allows to calculate the voltages 

in the load nodes. It is important to note that the matrix 

transport order ccR  is equal to ll, where l is the number 

of load nodes.  

Considering once again the Equation (7) as a product 

of the first load and unknown vector, we finally get the 

expression of the reactive power produced by generators: 
g g gc cq q R     (15) 

where, c  is known from the Equation (14). 

 

III. SIMULATION RESULTS 

On the basis of the proposed method, computational 

experiments are performed for the IEEE RTS-30 standard 

scheme, the data and mode of the scheme are given in 

detail in [11-13]. This scheme has 13 generating units, 82 

branches and 30 nodes. The peak load is 442 MW. The 

topology of scheme with 30 nodes is shown in Figure 1.  

Tables 1 and 2 show the results of calculations of load 

flow in the considered network before and after reactive 

power compensation. Nodal data assumed as inputs is 

known: the bus type, injection of P and V for nodes (PV), 

injections of active and reactive powers (for PQ nodes). 

The allowable reactive power generation for each 

generator and the possible min and max voltage values 

are also specified.  

The voltage profiles in the nodes of the considered 

network before and after reactive power compensation 

are shown on the Figure 2. As is evident, after the 

compensation the voltage in the nodes is within the 

established limits. 

Voltage and reactive power errors are always not 

more than 1.5% and 10%, respectively. The standard 

(mean-square) error for the voltage is 0.5% and 4.6% for 

reactive power. Including the time required for the 

calculation of load flow, the algorithm execution over 

speeding was 6-7 times higher than the known methods. 
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Figure 2. Voltage profiles in the network nodes before compensation and after compensation 
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Figure 1. Standard diagram of the IEEE RTS-30 electrical network  
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Table 1. Results of load flow calculation in IEEE RTS-30 standard network without reactive power before compensation 
 

Bus Voltage Generation Load PTL Load flow cos 

No V, % MW MVAr MW MVAr No MW MVAr I, A % 

13-7 87.786 0 0 31.92 15.26 13-5 21.422 -15.798 132.6 -80.5 

      13-6 -53.342 0.538 265.8 100.0 

3-14 90.567 0 0 8.680 2.240 3-12 -11.128 -3.707 226.6 94.9 

      3-15 2.448 1.467 55.1 85.8 

3-15 89.647 0 0 11.48 3.500 3-12 -25.107 -11.143 536.1 91.4 

      3-14 -2.426 -1.447 55.1 85.9 

      3-18 8.704 3.376 182.2 93.2 

      3-23 7.349 5.713 181.7 78.9 

3-16 90.631 0 0 4.900 2.520 3-12 -10.215 -6.638 235.2 83.9 

      3-17 5.315 4.118 129.8 79.1 

3-17 89.445 0 0 12.60 8.120 3-10 -7.313 -4.108 164.1 87.2 

      3-16 -5.287 -4.012 129.8 79.7 

3-18 87.799 0 0 4.480 1.260 3-15 -8.587 -3.139 182.2 93.9 

      3-19 4.107 1.879 90.0 90.9 

3-19 87.225 0 0 13.30 4.760 3-18 -4.090 -1.845 90.0 91.2 

      3-20 -9.210 -2.915 193.8 95.3 

3-20 87.813 0 0 3.080 0.980 3-10 -12.331 -3.978 258.2 95.2 

      3-19 9.251 2.998 193.8 95.1 

3-21 88.046 0 0 24.50 15.68 3-10 -21.909 -13.958 516.2 84.3 

      3-22 -2.591 -1.722 61.8 83.3 

3-22 88.127 0 0 0 0 3-10 -10.573 -6.476 246.1 85.3 

      3-21 2.592 1.725 61.8 83.3 

      3-24 7.981 4.751 184.4 85.9 

3-23 87.546 0 0 4.480 2.240 3-15 -7.241 -5.496 181.7 79.7 

      3-24 2.761 3.256 85.3 64.7 

3-24 86.126 0 0 12.18 6.190 3-22 -7.853 -4.552 184.4 86.5 

      3-23 -2.730 -3.191 85.3 65.0 

      3-25 -1.597 1.553 45.3 -71.7 

3-25 85.887 0 0 0 0 3-24 1.610 -1.531 45.3 -72.5 

      3-26 5.027 3.410 123.7 82.8 

      3-27 -6.637 -1.879 140.5 96.2 

3-26 82.898 0 0 4.900 3.220 3-25 -4.900 -3.220 123.7 83.6 

3-29 88.763 0 0 3.360 1.260 3-27 -8.602 -2.222 185.6 96.8 

      3-30 5.242 0.962 111.3 98.4 

3-30 81.781 0 0 14.84 2.660 3-27 -9.695 -1.881 211.3 98.2 

      3-29 -5.145 -0.779 111.3 98.9 

13-2 97.849 40.00 50.00 30.38 17.80 13-1 -257.26 -38.577 1162 98.9 

      13-4 62.021 19.032 290.0 95.6 

      13-5 118.23 29.158 544.4 97.1 

      13-6 86.631 22.607 400.2 96.8 

3-27 87.199 0 0 0 0 3-25 6.707 2.014 140.5 95.8 

      3-29 8.849 2.689 185.6 95.7 

      3-30 10.162 2.760 211.3 96.5 

      13-28 -25.719 -7.463 537.3 96.0 

3-28 88.426 0 0 0 0 13-6 -26.400 -7.764 136.1 95.9 

      13-8 0.678 -3.434 17.3 -19.4 

      3-27 25.723 11.198 138.8 91.7 

13-5 88.721 0.000 40.00 131.8 26.60 13-2 -110.86 -1.839 546.6 100.0 

      13-7 -21.014 15.239 128.0 -81.0 

13-1 106.000 402.1 125.8 0 0 13-2 270.80 73.613 1158 96.5 

      13-3 131.24 52.243 583.1 92.9 

1-13 96.642 0.000 24.00 0 0 3-12 0.000 24.000 1303.4 0.0 

3-12 93.166 0 0 15.68 10.56 3-14 11.334 4.136 226.6 93.9 

      3-15 25.728 12.367 536.1 90.1 

      3-16 10.386 6.997 235.2 82.9 

      13-4 -63.130 -10.863 1202 98.6 

      1-13 0.001 -23.137 434.5 0.0 

13-4 91.74 0 0 10.64 2.240 13-2 -59.473 -14.557 294.1 97.1 

      13-3 -117.54 -19.170 572.0 98.7 

      13-6 103.23 8.521 497.5 99.7 

      3-12 63.142 22.966 322.7 94.0 

13-3 93.675 0 0 3.360 1.680 13-1 -123.16 -26.608 588.3 97.7 

      13-4 119.80 24.928 571.4 97.9 

13-8 88.776 0.000 40.00 42.00 42.00 13-6 -41.325 -2.084 203.9 99.9 

      13-28 -0.675 0.084 3.4 -99.2 

1-9 92.121 0 0 0 0 3-10 38.900 17.849 812.8 90.9 

      13-6 -38.902 4.885 744.6 -99.2 

      1-11 0.001 -22.733 431.7 0.0 
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1-11 97.254 0.000 24.00 0 0 1-9 0.000 24.000 1295 0.0 

3-10 90.109 0 0 8.122 12.67 1-9 -38.900 -15.474 812.8 92.9 

      3-17 7.342 4.182 164.1 86.9 

      3-20 12.535 4.433 258.2 94.3 

      3-21 22.212 14.610 516.2 83.5 

      3-22 10.717 6.772 246.1 84.5 

      13-6 -22.028 -1.896 429.3 99.6 

13-6 89.428 0 0 0 0 13-2 -81.715 -10.978 403.2 99.1 

      13-4 -101.69 -3.895 499.7 99.9 

      3-7 54.329 1.156 266.7 100.0 

      3-8 41.586 2.281 203.7 99.8 

      3-28 26.562 7.310 134.7 96.4 

      1-9 38.905 -1.117 190.3 100.0 

      3-10 22.031 5.243 110.7 97.3 

 
Table 2. Results of load flow calculation in IEEE RTS-30 standard network without reactive power after compensation  

 

Bus Voltage Generation Load PTL Load flow cos 

No V, % MW MVAr MW MVAr No MW MVAr I, A % 

3-14 95.241 0 0 31.920 15.262 13-5 22.716 7.605 110.0 -98.8 

      13-6 -54.636 -7655 253.4 99.0 

  0 0 8.680 -1.044 3-12 -10.596 1.534 179.0 -99.0 

      3-15 1.916 -0.49 33.1 -96.9 

3-15 104.625 0 0 11.480 -4.117 3-12 -24.420 3.053 412.8 -99.2 

      3-14 -1.908 0.497 33.1 -96.8 

      3-18 8.258 -0.49 138.7 -99.8 

      3-23 6.589 1.057 111.9 98.7 

3-16 104.257 0 0 4.900 2.520 3-12 -10.009 -1.86 170.8 98.3 

      3-17 5.109 -0.66 86.4 -99.2 

13-17 104.127 0 0 12.600 3.783 3-10 -7.504 -4490 146.9 85.8 

      3-16 -5.096 0.707 86.4 -99.1 

3-18 103.584 0 0 4.480 0.187 3-15 -8.191 0.627 138.7 -99.7 

      3-19 3.711 -0.81 64.2 -97.7 

3-19 103.458 0 0 13.300 -1.662 3-18 -3.702 0.832 64.2 -99.6 

      3-20 -9.598 0.830 162.9 -99.6 

3-20 103.720 0 0 3.080 -0.096 3-10 -12.707 0.867 214.8 -99.8 

      3-19 9.627 -0.77 162.9 -99.7 

3-21 103.813 0 0 24.500 5.981 3-10 -21.419 -2.55 363.5 99.3 

      3-22 -3.081 -3.42 77.6 66.9 

3-22 103.925 0 0 0.000 -2.160 3-10 -10.165 -0.55 171.4 99.9 

      3-21 3.083 3.430 77.6 66.8 

      3-24 7.083 -0.72 119.8 -99.5 

3-23 103.485 0 0 4.480 1.160 3-15 -6548 -0.97 111.9 98.9 

      3-24 2.068 -0.19 35.1 -99.6 

3-24 103.274 0 0 12.180 -0.539 3-22 -7.029 0.803 119.8 -99.4 

      3-23 -2.063 0.205 35.1 -99.5 

      3-25 -3.089 -0.46 52.9 98.9 

3-25 103.991 0 0 0.000 -1.081 3-24 3.106 0.500 52.9 98.7 

      3-26 4.970 2.286 92.0 90.9 

      3-27 -8.076 -1.70 138.9 97.8 

3-26 101.948 0 0 4.900 2.181 3-25 -4.900 -2.18 92.0 91.4 

3-29 104.359   3.360 -4.185 3-27 -8.599 2.649 150.8 -95.6 

      3-30 5.239 1.537 91.5 96.0 

3-30 102.506 0 0 14.840 0.559 3-27 -9.667 0.854 165.6 -99.6 

      3-29 -5173 -1.41 91.5 96.5 

13-2 101.318 0 0 30.380 17.780 13-1 -252.72 17.27 1093 -99.8 

      13.4 61.044 0.868 263.6 100.0 

      13-5 115.75 15.53 504.2 99.1 

      13-6 85.546 -1.45 369.4 -100 

3-27 105.192 0 0 0.000 -12.172 3-25 8.145 1.836 138.9 97.6 

      3-29 8.762 -2.34 150.8 -96.6 

      3-30 9.954 -0.31 165.6 -100 

      13-28 -26.861 12.90 496.3 -90.0 

13-28 97.594 0 0 0 0 13-6 -27.465 9.443 130.2 -94.6 

      13-8 0.601 0.361 3.1 85.7 

      3-27 26.864 -9.80 128.2 -93.9 

13-5 95.008 0.000 40.00 131.88 26.600 13-2 -109.44 6.924 564.9 -99.8 

      13-7 -22.432 6.476 107.5 -96.1 

13-1 06.000 395.075 30.73 0 0 13-2 264.74 13.05 1093 99.9 

      13-3 130.33 17.68 542.7 99.1 

1-13 07.100 0.000 11.98 0 0 3-12 0.000 11.98 587.4 0.0 

3-12 05.533 0 0 15.680 7.159 3-14 10.724 -1.26 179.0 -99.3 
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      3-15 24.788 -2.32 412.8 -996 

      3-16 10.099 2.049 170.8 98.0 

      13-4 -61.292 6.197 1021 -99.5 

      1-13 0.000 -11.8 195.8 0.0 

13-4 97.955 0 0 10.640 2.240 13-2 -58.991 1.797 263.4 -100 

      13-3 -118.04 9.984 529.0 -99.6 

      13-6 105.76 -16.5 475.0 -98.3 

      3-12 61.301 2.527 274.0 99.9 

13-3 99.256 0 0 3.360 1.680 13-1 -123.33 3.575 543.7 -100 

      13-4 119.97 -5.25 529.2 -99.9 

13-8 97.063 0.000 40.00 42.000 42.000 13-6 -41.404 2.403 186.9 -99.8 

      13-28 -0.596 -4.40 20.0 13.4 

1-9 104.313 0 0 0.000 -2.176 3-10 38.433 -3.17 646.8 -99.7 

      13-6 -38.434 24.84 767.5 -84.0 

      1-11 0.001 -19.4 327.0 0.0 

1.11 108.200 0.000 20.22 0 0 1-9 0.000 20.22 980.9 0.0 

3.10 104.726 0 0 8.122 -21.328 1-9 -38.433 4.675 646.8 -99.3 

      3-17 7.527 4.550 146.9 85.6 

      3-20 12.849 -0.55 214.8 -99.9 

      3-21 21.570 2.879 363.5 99.1 

      3-22 10.235 0.694 171.4 99.8 

      13-6 -21.869 9.082 395.6 -92.4 

13-6 97.474 0 0 0 0 13-2 -81.404 10.32 368.2 -99.2 

      13-4 -103.67 20.56 474.3 -98.1 

      13-7 55.528 8.817 252.3 9.8 

      13-8 41.623 -2.48 181.1 -99.8 

      13-28 27.617 -10.1 132.0 -93.9 

      1-9 34.438 -20.8 196.2 -87.9 

      3-10 21.872 -6.24 102.1 -96.2 

 

IV. CONCLUSION 

It is proposed a method of the reactive power model 

linearization, which allows for calculating quickly the 

voltage in the nodes, as well as the active and reactive 

power in the branches. The effectiveness of the method in 

assessment of the reliability of operation and optimization 

of load flow in the electrical network is shown.  
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