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Abstract- The free oscillation of an anisotropic, 
inhomogeneous, longitudinally reinforced cylindrical 
shell contacting a moving fluid is investigated in the 
present article. Using the Hamilton urgent urban variation 
principle, systems of equations of motion of a 
longitudinally reinforced non-uniform in thickness 
anisotropic cylindrical shell, which is in contact with a 
moving fluid, are constructed. To take into account the 
heterogeneity of the shell material over the thickness, it is 
assumed that the Young's modulus and the density of the 
shell material are functions of the normal coordinate. 
When studying the free oscillations of an anisotropic 
cylindrical shell inhomogeneous in thickness, which is in 
contact with a moving fluid and is inhomogeneous over 
the thickness, two cases are considered: a) liquid inside 
the shell is at rest; b) the liquid inside the shell moves at a 
constant speed. In both cases, the frequency equations are 
constructed and implemented numerically. In the 
calculation process, the linear and parabolic laws are 
adopted for the inhomogeneity function. Characteristic 
dependency curves are constructed. 
 
Keywords: Reinforced Shell, Variation Principle, 
Fluid, Free Oscillation, Anisotropic Shell. 
 

I. INTRODUCTION 

In the design of modern apparatus, machines and 
structures, calculations on the stability, vibrations, and 
strength of thin-walled elements of shell-type structures 
that are in contact with the medium play an important 
role. Such structures may be in contact with the liquid 
and subject not only to static loads, but also dynamic. To 
give greater rigidity, the shells are reinforced with 
different ribs. However, the behavior of heterogeneous 
anisotropic thin-walled structural elements with ribs, 
accounting for their discrete location, the influence of the 
liquid, has not been adequately studied. Therefore, the 
development of mathematical models for investigating 
the behavior of reinforced heterogeneous anisotropic 
shells, which most fully take into account their work 
under dynamic loads, and carrying out studies of stability 
and oscillations on their basis, as well as the choice of 
rational parameters of a structure in contact with a liquid, 
are urgent problems. 

We note that studies of free vibrations of ribbed 

isotropic homogeneous cylindrical shells filled with a 

flowing liquid are devoted to [1, 2]. Effects of the number 

of ribs, their rigidity, fluid flow rate, various mechanical, 

physical and geometric dimensions of the shell on the 

frequencies of natural oscillations and the optimization 

parameter of a circular ribbed cylindrical shell are 

studied. Works [3-4] are devoted to the study of free 

oscillation by an isotropic non-uniform reinforced by the 

cross systems of the ribs of a cylindrical shell that 

contacts the moving fluid. Using the variation principle of 

Hamilton urgent urban, systems of equations of motion of 

reinforced cross-bars, inhomogeneous in thickness of an 

anisotropic cylindrical shell contacting a moving fluid, 

are constructed.  

The results of an experimental investigation of the 

effect of reinforcing ribs and attached solids on the 

frequencies and shapes of free vibrations thin elastic 

structurally inhomogeneous shells are presented in [5]. In 

[6, 7] with the help of an asymptotic method, the 

frequency equations of smooth cylindrical shells with a 

filled liquid are constructed, approximate frequencies of 

the equation and simple calculation formulas are 

obtained, which allow one to find the values of the 

minimum natural frequencies of the oscillations of the 

considered system. Here, forced oscillations of a 

reinforced shell filled with a liquid are investigated, and 

the amplitude-frequency characteristics of the considered 

oscillatory processes are determined.  

The work [8, 9, 10] is devoted to the study of the 

parametric oscillation of a nonlinear and inhomogeneous 

in thickness rectilinear rod in a viscoelastic medium by 

the use of the Pasternak contact model. The influence of 

the main factors - the elasticity of the base, the 

damageability of the rod and shell material, the 

dependence of the shear coefficient on the vibration 

frequency on the characteristics of the longitudinal 

oscillations of the points of the rod in a viscoelastic 

medium is studied. In all the investigated cases, the 

dependencies of the dynamic stability zone of the rod 

vibrations in a viscoelastic medium on the design 

parameters on the load-frequency plane are constructed. 
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II. PROBLEM STATEMENT 
An anisotropic, inhomogeneous ribbed shell is 

considered as a system consisting of its own shell and 
rigidly connected to it along the contact lines of the 
ribs. It is assumed that the stress-strain state of the shell 
can be completely determined within the framework of 
the linear theory of elastic thin shells based on the 
Kirchhoff-Love hypotheses, and the Kirchhoff-Clebsch 
curvilinear rod theory is applicable for the calculation of 
edges. The coordinate system is chosen so that the 
coordinate lines coincide with the lines of the principal 
curvatures of the middle surface of the shell. It is 
assumed that the edges are placed along the coordinate 
lines, and their edges, like the edges of the skin, lie in the 
same coordinate plane. In addition, it is assumed that all 
the ribs form a regular system. By a regular system of 
longitudinal and annular edges we mean a system in 
which the rigidity of all edges, their mutual distances are 
equal, and the distance from the edge of the shell to the 
nearest edge is equal to the distance between the edges. 

The deformed state of the skin can be determined 

through three component movements of its median 

surface ,u   and w. In this case, the angles of rotation of 

the normal elements 1 2,   relative to the coordinate 

lines y and x are expressed through w and   using 

dependencies 1 2,
w w

x y R


 

  
     

  
 , where R is 

radius of the middle surface of the shell. 

To describe the deformed state of the ribs, in addition 

to the three components of the displacement of the 

centers of gravity of their cross sections ( , ,i i iu w , where 

i is the longitudinal rod), it is also necessary to determine 

the angles of twisting kpi . 

Taking into account that according to the accepted 

hypotheses there is a constancy of radial deflections 

along the height of the sections, and also resulting from 

the conditions of rigid joining of the ribs with the shell of 

equality of the corresponding twist angles, we write the 

following relations: 

1 2

1 2

( ) ( , ) ( , ); ( ) ( , ) ( , );

( ) ( , ); ( , ); ( ) ( , )

i i i i i i i i

i i i i kpi i

u x u x y h x y x x y h x y

w x w x y x y x x y

   

   

   

  

where, 10.5i ih h H  , h  is shell thickness, 1
iH  is 

distance from axes, i is the longitudinal rod to the surface 

of the shell, ix  and iy  are the coordinates of the lines of 

conjugation of edges with a shell, ,i kpi   are the angles 

of rotation and twisting of the cross sections of the 

longitudinal rods. 

With respect to external influences, it is assumed that 

the surface loads acting on the ribbed shell on the liquid 

side can be reduced to the components ,x yq q  and ,zq

 applied to the middle surface of the shell. Differential 

equations of motion and natural boundary conditions for 

a longitudinally supported orthotropic cylindrical shell 

with a fluid are obtained on the basis of the variation 

principle of Hamilton urgent urban. To do this, we first 

write down the potential and kinetic energies of the 

system. 

To take into account the inhomogeneity in the 

thickness of the cylindrical shell, we start from the three-

dimensional functional. In this case the functional of the 

total energy of the cylindrical shell has the form: 

 

2

11 11 22 22 12 12

2

2 2 2

1
(

2

h

h

V

u w
z dxdydz

t t t

     









   




       
                 

 
 (1) 

There are various ways to take into account the 

inhomogeneity of the shell material. One of them is that 

the Young's modulus and the density of the shell material 

are taken as functions of the normal coordinate  z :

     ,  E E z z    [11]. It is assumed that the 

Poisson's ratio is constant. In this case, the deformation-

tension relationship has the form: 

11 11 11 12 22

22 12 11 22 22

12 66 12

( ) ( )

( ) ( ) 

( )

b z b z

b z b z

b z

  

  

 

 


 
 

 (2)              

11 22 12 ,  ,
u u

w
x y y x

 
  

   
    
   

 (3) 

Taking into account Equations (2)-(3) and 

 



2 2 22

2

2 2 2

0

2 2

1

2 2
2 2

2

2 . .

h

h

u w
z dxdydz

t t t

u w

t t t

w u w

x t t y t t

w w
dxdy

x t y t















         

                   



                           

    
          

                    

 












 

in (1), we can write: 







2
11 11 12 11 22 26 12 22

2 2
16 11 12 22 22 66 12

2 2 2

1
2 2

2

2

V b b b

b b b dxdy

u w
dxdy

t t t

    

   







   

  


         
                   









 (4) 

where,

     
2 2 2

11 11 12 12 22 22

2 2 2

 ,  ,  

h h h

h h h

b b z dz b b z dz b b z dz

  

      

  1 2
11 22

1 2

2

6
1

6 66

2

2

( ) ( )
( )   , , ( )

1 1

h

h

E z E z
b z bb b dz zz

   


 
 

   
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2 1 1 2
12 66 12

1 2 1 2

( ) ( )
( )  ,  ( ) ( ) ( )

1 1

E z E z
b z b z G z G z

 

   
   

 
 are

 
the basic modules of elasticity of an orthotropic 

material, and 

.

( )

h

h

z dz 


  . 

Expressions for the potential energy of elastic 

deformation ith longitudinal edge is [12]: 

22 2

2
0

2 22
i

i2

1

2

x

L
i i

i i i i yi

крi
i zi i кр

u w
П E F E J

x x

E J G J dx
x



                   


    
           



 (5) 

The kinetic energy of the edges is written in the 

form [12]: 

2

1

2
2 2x

крi крii i i
i i i

ix

Ju w
K F dx

t t t F t




          
          

          
  (6) 

In the Equations (4) and  (6)  , , ,i zi yi kpiF J J J  are area and 

moments of inertia of the cross section ith longitudinal 

axis respectively with respect to the axis Oz  and an axis 

parallel to the axis Oy  and passing through the center of 

gravity of the section, as well as its moment of inertia 

during torsion; ,i iE G are module of elasticity and shear 

of material ith longitudinal rod, i  is the density of the 

materials from which ith  second longitudinal kernel. 

The potential energy of external surface loads acting 

on the side of an ideal fluid applied to the shell is defined 

as the work performed by these loads when the system is 

transferred from the deformed state to the initial 

undeformed state and is represented as: 
2

0

0 0

L

zA q wdxdy



    (7) 

The total energy of the system is equal to the sum of 

the energies of the elastic deformations of the shell and 

transverse edges, as well as the potential energies of all 

external loads acting on the side of the ideal fluid: 

 
1

0

1

k

i i

i

J V K A


       (8) 

where, k1 is number of longitudinal ribs. 

Assuming that the main flow velocity is equal to U

and the deviations from this velocity are small, we use the 

wave equation for the perturbed velocity   potential 

with respect to [13]: 
2 2 2

2

2 2 2 2
0

1
2 0U U

R ta t R

  


 

   
         

 (9) 

The expression for the total energy of the system (8), 

the fluid motion Equation (9) is supplemented by contact 

conditions. On the contact surface of the shell-liquid, the 

continuity of radial velocities and pressures is observed.  

 

The condition of impermeability or smoothness of 

flow past the shell wall has the form [13]: 

0
1

r r R
r R

w w
U

r t R


 




   
    
   

 (10) 

Equality of radial pressures from the liquid to shell: 

z r Rq p    (11) 

If we substitute in (9) and (10) 0U  , we obtain the 

equation of motion and the condition of impermeability 

or smoothness of flow past the shell wall for a fluid at 

rest. The frequency equation of a ribbed inhomogeneous 

orthotropic shell with a flowing liquid is obtained on the 

basis of the stationarity principle of Hamilton urgent 

urban action: 

0W   (12) 

where , 

t

t

W Jdt





   action on Hamilton, and t  and t  are 

given arbitrary moments of time. 

Supplementing the total energy of the system (8), the 

fluid motion Equation (9) with contact conditions, we 

arrive at the problem of natural oscillations longitudinally 

under  crepe  which is inhomogeneous in thickness, of an 

orthotropic cylindrical shell with a flowing liquid. In 

other words, the problem of the natural oscillations of 

a longitudinally supported heterogeneous orthotropic 

cylindrical shell with a flowing liquid reduces to the joint 

integration of the expressions for the total energy of the 

system (8), the fluid motion Equation (9) when 

conditions (9) and (10) are satisfied on contact surface. 

 

III. PROBLEM SOLUTION 

 Potential of disturbed velocities   looking for as: 

   1 1 1, , , cos sin sinr t f r n t       (13) 

Using (10), from condition (7), (8) we have: 

0
1

2 2 2
2 2
0 02 2 2

11

2

n

n m

w w
U

t R

w w w
p U U

R tt R





 


  
 

   
    

  


   
         

 (14) 

where, 

   

   

1

1 1 1

11

/ , 1

/ , 1

, 1

n n

n n n

n

n

I r I r M

J r J r M

R
M

nR



 

 




  



  

 


 (15) 

where, 0 1
1

0

/U R
M

a

  
 ,   2 2 2 2

11R M   ,

 2 2 2 2
1 1 1R M   , nI  is modified Bessel function of 

the first kind of order n, nJ  is functions Bessel of the 

first kind of order n,  2 2
0 0 0/ 1E v R   

 
and 

1 0/ .    
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In the Equation (8), the variable quantities 

are , , ,.u w  These approximate values are approximated 

as follows: 

0 0

0

cos sin sin  , sin cos sin

sin sin sin

x x
u u k t k t

l l

x
w w k t

l

 
     


 


 


 


 (16) 

Substituting (16) into (8) after integration, we obtain a 

function of the variables 0 0 0,  , .u w The stationary value of 

the obtained function is determined by following system: 

0 0 0

1) 0 , 2) 0 , 3) 0
J J J

u w

  
  

  
 (17) 

       A nontrivial solution of a system of linear algebraic 

Equations (17) of the third order is possible only in the 

case when 1  is the root of its determinant. Definition 1

 reduces to a transcendental equation, since 1  enters the 

arguments of the Bessel function: 

det 0 ,  , 1,3ija i j   (18) 

 

IV. NUMERICAL RESULTS 

The frequency Equation (18) was solved numerically 

with the following initial data: 

160  mmR  , 96.67 10  PаiE   , 0 1430  m/seca  ,

0.45 mmh  , 800 mmL  , 37.8 г/cmi  , 1 0.11  ,

2 0.19  ,
. 6

3
0.5305 10

2

kp iI

R h

  ,

6

3
0.8289 10

2

yiI

R h

  , 10.1591 10
2

iF

Rh

  ,

6

3
0.13 10

2

ziJ

R h

  , 10.1375 10ih R   

Two types of laws of variation of inhomogeneity are 

considered: 

Linear 1 1( ) 1
z

E z E
h


  

    
  

, 2 2( ) 1
z

E z E
h


  

    
  

,

0(z) 1
z

h
  

  
    

  
 and Parabolic 

2

1 1( ) 1
z

E z E
h


  

   
   

, 
2

2 2( ) 1
z

E z E
h


  

   
   

,
2

0(z) 1
z

h
  

  
   

   

 

where, , ,и   are parameters of inhomogeneity. Note 

that, under linear law, the change 1,  1  , with a 

parabolic change ,   are arbitrary. 

The results of the calculation are shown in Figures 1 

and 2. Figure 1 shows the frequency dependence of the 

parameter 1  of the relative flow rate U   for various 

laws of variation of inhomogeneity over the thickness of 

the shell, and for different ratios 1 2/E E . It is seen that 

the increase in speed, decrease 1 2/E E  leads to a decrease 

in frequency. Note that 0U   corresponds to a fluid at 

rest.  

Figure 2 illustrates the influence of the number of 

longitudinal ribs 1k  on frequency parameters 1

 oscillations of the considered system. It can be seen that 

with increasing 1k  frequency parameters 1  the 

oscillations of the system are first increased, and then at a 

certain value 1k  begin to decrease. This is due to the fact 

that, with increasing 1k  the weight of the rods increases 

and this leads to a significant effect of their inertial 

properties on the oscillation process.  

Comparisons of these graphs show that taking into 

account the inhomogeneity leads to a decrease in the 

values of the natural frequencies of the oscillations of the 

considered system in comparison with the natural 

frequencies of oscillations of the same system when the 

shell is homogeneous. In addition, with a decrease in the 

ratio 1 2/E E  of the oscillation frequencies of the system 

under consideration also decreases in comparison with 

the natural frequencies of oscillations of the same system 

when the shell is isotropic. 

 
Figure 1. Dependence of the oscillation frequency parameter on the 

fluid velocity, 1- linear law, 2- parabolic law 

 

 
Figure 2. Dependence of the frequency parameter on the number of 

longitudinal edges, 1- homogeneous shell, 2- linear law, 3- parabolic law 
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