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Abstract- Conical shells are most used in aircrafts and 

also engineering. We consider a circular closed, solid, 

viscous-elastic medium-filled conical shell of invariable 

layer, usually stiffened with longitudinally ribs, 

supporting shell associated mass in opposite as 

diametrically points as meaning of two springs of the 

same rigidity as was shown in Figure 1. The main 

problem of determination of natural frequency of 

vibrations of such a shells problems are solved in linear 

statement by the energetic ways. The discrete 

arrangement of stiffening longitudinal ribs are taken into 

account. To construct the frequency equation, the second-

order Lagrange equation is used. The frequency equation 

is solved numerically and characteristic curves of 

dependence are constructed.   

 

Keywords: Vibration, Conical Shell, Viscous-Elastic 

Medium, Longitudinal Ribs, Associated Mass. 

 

I. INTRODUCTION 

One of the papers on investigation of stability of 

conical shells was Kh.M. Mushtairs paper [1]. In the 

papers [2, 3], the equation of motion was obtained for 

conical shells stiffened with rigidity ribs under linear-

elastic deformation with regard to lateral shear. The 

mathematical model of deformation of stiffened 

orthotropic shells of general form based on the function 

of total energy of deformation was represented in [4].  

The paper [5] was devoted to the construction of the 

mathematical model of deformation of conical shell-type 

constructions based on the functional of total energy of 

deformation with regard to orthotropy of the material, 

geometrical non-linearity and also lateral shear. In the 

paper [6] around closed, truncated medium-contacting 

conical shell of invariable layer usually starch with cross 

ribs supporting shell associated mass in diametrically 

opposite points by means of two springs of the same 

rigidity, is considered the problem of determination of 

natural vibrations of frequencies of such a shell was 

solved in linear statement by the energetic method.  

A similar method was solved in [7] for longitudinally 

stiffened truncated conical shells. In this paper [8], the 

inhomogeneity was taken into account by accepting the 

Young modulus and the density of the material as a 

function of coordinate changing in thickness. In [9], the 

free oscillation of a longitudinally strengthened, 

orthotropic, moving fluid-contacting cylindrical shell 

inhomogeneous in thickness, is studied. Using the 

Hamilton-Ostrogradsky variational principle, the systems 

of equations of motion of a longitudinally strengthened, 

orthotropic moving-fluid-contacting cylindrical shell 

inhomogeneous in thickness, is constructed. 

 

II. PROBLEM STATEMENT 

Such a system of coordinates was accepted; 

inconstant radius r  and also dihedral angle   between 

diametrical planes, the potential energy of the shell is 

calculated by means of the following expression [10]: 
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where, E is elasticity modulus; h is shell layer; v  is a 

Poisson ratio; 1 2,r r are the greatest radius and also 

smaller bases of the shell;   is an angle as we know 

between the generatrix also axis of the husk; ,  ,  u w  are 

the components displacement vector of the points of the 

median surface of the shell along the generatrix, in 

tangential direction and also along the normal main 

formula to the median surface; ( )3 2/12 1 .D Eh v= −  
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The 2  the potential energy of deformation of 

longitudinal ribs equals [11]: 
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where 1 1 1 1,  ,  ,  kpF I I I  are area and also moments of the 

tia of the cross section of the longitudinal bar with respect 

to tangential and also radial axes respectively and also 

torsion inertia moment of; G  is a shear modulus, 1k  is 

the number of longitudinal bars; i  are coordinates of 

their arraignment. 

The kinetic energy, T1 of longitudinal ribs are 

calculated by means of the expression: 
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in which 1  is shells  particular gravity of the material 

and also ribs; g is gravity acceleration. 

The influence of medium on the shell is determined of 

eternal surface loads applied to the shell and also is 

calculated as a work performed by these loads when 

taking their system from the deformed state to the initial 

nondeformed are and also is represented in the form: 

1 2

0 0

r

rA q rdrd



=    (1)                                                          

We will take into account the motion of mass only in 

the level of cross-section along the axis z (Figure 1). The 

motion of the mass from this plane and also deformation 

of springs caused by displacement of points of their 

fastening to the husk, in the command of displacement 

vector u is not taken into account. Since the problem is 

solved by our method like in linear method statement, 

i.e., under the assumption that displacement of points of 

the deformed system is small, such assumptions are valid. 

The potential energy 3  of the springs and also 

kinetic energy 2T  of the mass are equal to 22 0.5T Mz= , 

2
3 0( cos )z w c = −  respectively, where 0w  is the 

displacement of spring attachment points arranged in 

diametrical coordinate plane 0. =  

 

III. PROBLEM SOLUTION 

Represent the shell displacement in this form:  
2 2
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Figure 1. A longitudinally reinforced conical shell with a mass and also 

in contact with the medium 

 

where, n is the number of waves in peripheral direction; 

m is the number of half-waves along the generatrix. 

These expressions satisfy such conditions of flexible 

figure in of the husk at the edges for where 0.w = =  

Expressions (2) are convenient in the sense that’s saving 

to the multiplier 2r , the integrals encountered in 

calculating energy, are taken in squares which greatly 

facilitates the solution of the problem. Besides, 

expression (2) qualitatively reflects the fact that crests of 

half waves of the form of vibrations along the generatrix 

of the conical shell were slightly displaced towards its 

greater base. 

It’s necessary to note that for even n the springs are 

deformed, the mass doesn’t more; for add n the mass 

performs vibrations along the axis z. In future, we will 

consider this case. 

We suppose that the influence of the medium on the 

shell is subjected to the model [12]: 
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where, ( ) * ( )tt A e  − − − =  and *
0,  ,  ,  A q q  are 

constant, and w  is a shell deflection. 

Taking into account (2) and also (3) in (1) we get: 
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If in the case of natural vibrations (4). If 
* sinn nA A t= , we get: 
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Accepting, * * *sin , sin , sinn n n nz z t A A t B B t  = = = ,  

* sinn nA D t= , where   is a natural frequency of 

vibrations of the system under consideration and also 

substitute these solutions in Equation (3), for the total 

energy we obtain the second order polynomial with 

respect to the unknowns * * *,  ,  n nz A B : 
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The coefficient 11 22 33 44 55 66 77 88,  ,  ,  ,  ,  ,  ,           

are of the bulky form and also we don’t give them here. 

Substitute the found expression for kinetic and also 

potential energy (7) in Lagrange’s account order known 

Equation [13] we get system of linear equations with 

respect to unknown constants * * * *,  ,  ,  n n nz A B D : 
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Some of the system (7) is homogenous, for the 

existent of in nontrivial solution,we equate the principal 

determinant of the system to zero. As a result, we obtain 

an equation allowing to define natural frequency 

vibrations of a valid conical shell with associated mass 

and also contacting with viscoelastic medium. 
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Equation (8) can be represented as: 
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IV. NUMERICAL RESULTS 

The natural frequency of vibrations of the system was 

determined by numerical solution of the (9). For the 

problem parameters were accepted 1 160mmr = , 

2 85mmr =  longitudinal bar of the corner profile with 

sites 5 5 1   (to mm), 1 32,k = 1,m = * 0.034,A =

=0.05 . The longitudinal bars were attached to the inner 

surface of the shell. The associated mass whose value 

varied in the research process was attached in the middle 

of the shell at diametrically opposite points. In (9), the 

desired   is a complex value: 1 2 ,i  = + moreover 

1 corresponds to the natural frequency of vibrations of 

the system, 2 characterizes the damping of vibrations of 

the system in time. Figure 2 depict the curve reflecting 

the dependence of the natural frequency *
1 / 2f  =  of 

vibrations of the shell with associated mass medium in 

the amount of waves n in peripheral direction. If it is seen 

that with increasing the number of waves n in peripheral 

direction, the frequency vibrations of associated mass 

medium shell at first decrease, attaining minimum it 

befits to increase. 

 

 
 

Figure  2. Dependence of the natural frequency of shell vibrations on 

the number of waves in the circumferential direction 

 

Figure 3 depicts the curves reflecting the dependence 

of minimal natural frequency of vibrations of the system 

on the value of the associated mass with respect to the 

rigidity of springs /c c D=  for / 0.1q q D= =  and also 

0 / 0.5.q q =   

The analysis of curves shows that the influence of the 

associated mass on minimal natural frequency of 

vibrations of the shell is very substantial. With decreasing 

rigidity of connections between the mass and also shell, 

this influence increases. 
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Figure 3. Dependence of the natural frequency of shell vibrations on the 
magnitude of the attached mass 
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