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Abstract- We investigated the propagation characteristics 

of nonlinear low frequency electrostatic waves in 

electron-ion quantum plasma. After reviewing the basic 

introduction of quantum plasma, we describe the 

nonlinear phenomenon of electrostatic wave. We 

presented that the electrons are degenerate and weakly 

correlated, whereas ions are non-degenerate and strongly 

correlated. The reductive perturbation technique is 

employed for weakly nonlinear electrostatic modes.  In 

this study, we observed that the ion viscous dissipation 

affects the weakly nonlinear structures due to ion-ion 

correlations. In this research work, our emphasis on the 

dispersion relation and shown the existence of shock 

wave in dissipation dominated due to ion-ion correlation 

in the weakly nonlinear limit.  

  

Keywords: Electrostatic Wave, Quantum Plasma, KdVB 

(Korteweg-de Vries Burger) Equation. 

 

I. INTRODUCTION 

In recent years, there has been the rapidly growing 

interested in global properties of quantum plasma in field 

of modern sciences and technologies in compact of 

astrophysical objects, such as white-dwarfs, neutron stars, 

and pulsars, etc. Actually, all plasmas are in some sense 

are quantum because it consists of charged particles as 

they obey the laws of quantum mechanics [1]. Although 

the density of classical plasma increases or its 

temperature decreases, it can enter a region where 

quantum effect starts. Quantum plasmas are obtained in 

high density matter. Dense plasma can be explained as 

the collective behavior of charged particle in which 

electrons are degenerate and weakly correlated whereas 

ions are non-degenerate and strongly correlated [2].  

 The nonlinear interaction between matter and wave in 

plasmas is the most important topic of plasma physics. 

For modern device physicists dealing with quantum 

wells, quantum wires, quantum dots, etc. the linear and 

nonlinear behaviors of waves and instabilities, through 

the carrier’s dynamics in semiconductors, are crucially 

important [3]. In quantum plasma fluids, theoretical 

investigation of nonlinear phenomena associated with 

electrostatic waves has been carried out by the number of 

authors.  

 In quantum plasmas, the Collective interactions 

between an ensemble of degenerate electrons and 

positrons/holes give rise to novel waves and structures by 

Bohm and Pines in 1953 [4, 5]. The basic concept of 

semiconductor quantum plasma is the de Broglie 

wavelengths of the plasma particles may be comparable 

to the Debye length [6] or other scale lengths of the 

plasma by using magneto hydrodynamic (MHD) model 

for plasmas, have developed quantum hydrodynamic 

(QHD) model to study the quantum corrections in plasma 

characteristics by Haas [7], Manfredi [8] and M. 

Marklund, P.K. Shukla in 2006 [9]. In quantum plasmas, 

due to inter-fermion distances much lower than its de 

Broglie wavelength and the influence of the Pauli 

exclusion rule, many quantum effects such as electron-

tunneling, degeneracy pressure, and Landau quantization 

may occur. 

 Quantum plasma shows dispersion instead of 

dissipation, which is caused by quantum tunneling effects 

described by Bohm potential term. Whereas dissipation 

may arise due to kinematic of viscosity, collisions and 

wave is propagation is governed by interplay between the 

quantum tunneling and wave particle interactions.  

Most of these works have based on quantum 

hydrodynamic (QHD) model of plasmas. This model is 

very useful to study the short-scale collective phenomena, 

such as waves, instabilities, linear, and nonlinear 

interactions in dense plasmas [10, 12]. By the quantum 

hydrodynamics model (QHM), the low frequency 

electrostatic modes have been investigated in weakly 

coupled quantum plasma. In dusty plasmas, the low 

frequency dust acoustic waves is strongly correlated in 

classical plasmas with non-degenerate electrons, ions and 

charge dust grains have been observed. The nonlinear 

studies of electrostatic and electromagnetic waves in 

quantum plasma were based on the generalized quantum 

hydrodynamical (GQHD) equations [13, 15] for 

nonrelativistic degenerate electron fluids supplemented 

by Poisson’s and Maxwell’s equations. 

 In this paper, the electrons are degenerate and weakly 

correlated is described by quantum hydrodynamic model 

(QHM), whereas ions are non-degenerate and strongly 

correlated is described by generalized hydrodynamic 

model (GHM).  
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In this research work, our main emphasis on 

dispersion relation for nonlinear electrostatic modes in 

strongly coupled plasmas by using continuity equations 

and Poisson’s equation. In weakly nonlinear limit, ion-

ion correlation effects introduce a viscous dissipation, 

which is responsible for Korteweg-de Vries Burger 

equation. The dispersion relation is analyzed theoretically 

and numerically, and this solution shows existence the 

shock wave in dissipation dominated. 

 

II. THEORETICAL FORMULATION 

In order to study the weakly nonlinear low frequency 

electrostatic wave propagation characteristics, we take the 

assumption to solve our problem. 

1. The degeneracy parameter for a particle kind a is 

defined as: 
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aF a an m =  are the Fermi energy 

of ground state and /
aB a am T =  is  the thermal de 

Broglie wavelength of particle kind a. 

(i) The electrons are fully degenerate so that the electron 

Fermi energy ( Fe ) is much larger than electron thermal 

energy ( eT ) and electron degeneracy parameter 1e  . 

This shows that  
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(ii) The ions are non-degenerate so that ion Fermi energy 

( Fe ) is much smaller than ion thermal energy ( iT ) and 

ion degeneracy parameter  1e  . This shows that 
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2. The electron correlations are neglected as electron-

electron correlation effects are negligibly small compared 

to ion-ion correlation. The electron coupling parameter is  
2/3

5/3 1

3
0

1
1.5e e

e Fe

Z
n

 


− −
 

 = =  
 

 

The electron degeneracy parameter 1e  , 1Z 

and ( / ) 1i eT T =  . Where / 3Fe Fe pev =  is the 

Thomas-Fermi three dimensional screening length of 

electrons, 
2

0

0

e
pe

e

n e

m



=  is the electron plasma 

frequency and 
2 Fe

Fe
e

v
m


=  is the Fermi speed of 

electrons. The electron-ion interactions are weak 

compared to ion-ion correlations and, therefore, we 

neglect electron-ion interactions. 

3. The ions are strongly correlated, i.e., ion coupling 

parameter is: 
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where,
2 2

0 0/ ( )Di i iT n Z e =  is the ion Debye radius 

and ( )
1/3

0 3 / 4i ix n=  is inter ionic distance. This 

implies that:  
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The assumptions 1 and 3 determine highly dense 

quantum plasma system 0[ ,eQ en n  

0  ]SC i iQn n n  . Our assumptions are valid for a 

typical hydrogen plasma if plasma number density 

( )28 32 3
0 ~ 10 10  in m−−  and ( / ) 1i eT T = = . It means 

physical plasma system is highly dense if the ion 

coupling parameter 1i   (strongly coupled) in which 

electrons with weak interactions form a degenerate 

quantum fluids whereas ions with strong interactions 

form a classical fluids. 

In order to account for the correlation among ion 

dynamics, we use viscoelastic approach which is 

described by general hydrodynamics model [16, 17]. We 

consider generalized momentum equation for ion fluid 

using the relation .i

d
u

dt t


= + 


 is: 
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 (1)  

where, m  is the viscoelastic relaxation time that 

accounts the memory function, iu  is ion fluid velocity, 

i im n =  is ion mass density, iP  is ion pressure,   and κ 

are the shear and bulk coefficients of viscosity. 

The general hydrodynamic model also includes ion 

continuity equation and energy equation. The ion energy 

equation is not required because ion dynamics is 

isothermal at strong couplings.  

( ) 0i
i i

n
n u

t


+  =


 (2)

                                                    

 

the gradient ion pressure becomes: 

i i i iP T n =   

where, i  is the coefficient of isothermal compressibility 

for ion fluid. 

The conservation of momentum equation for electron 

is: 
22

0
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 (3)

                     

 

where, en  is unperturbed electron number density, eP  is 

electron pressure and the term 
2

 arises due to electron 

tunneling through the Bohm potential [18]. The system of 

equations is closed by Poisson’s equation. 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 41, Vol. 11, No. 4, Dec. 2019 
 

 18 
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 In strongly coupled quantum plasma, we considered 

the ion viscous dissipation effects the weakly nonlinear 

structures in 1-dimensional in the hydrodynamic range 

( 1)m  . 

To explore the nonlinear structures, it is convenient to 

write governing equations in dimensionless form. We use 

following dimensionless variables: 
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where, 
3 2

pe

Fe

H
H

T


= =  the quantum diffraction due to  

1-dimensional electron tunneling effect and 

3 /Fe Fe Fe pev  = =  is the Thomas-Fermi                  

1-dimensional screening length of electrons.
 

Now, we derive the Korteweg-de Vries equation from 

(5)-(7) by employing the reductive perturbation technique 

and the stretched coordinates: 

( )1/2 x Mt = −  (8) 

3/2t =  (9) 

where,   is a smallness parameter proportional to the 

amplitude of the perturbation and M is the mode 

normalized by the ion thermal speed.  

We can expand the variables ( ) ,  e i in u  and E in a 

power series of   as: 
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Now, using (13)-(16) we have: 
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Now substituting (13)-(16) into (5)-(7) and equating 

the coefficient of from (10)-(12), we obtain: 
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Now, using above equation and eliminating ( ) ,  e i in u  

and E, we obtain:  
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where, the coefficients A and   are given by 
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Equation (23) is the Korteweg-de Vries Burger 

equation of the weakly nonlinear low frequency 

electrostatic wave in strongly coupled quantum plasma. 

The solution of Korteweg-de Vries equation is found by 

transforming the independent variables   and   to:  

0 ,  K C   = − =  (25)  

where, 0C  is a constant velocity normalized by c. 

 

III. NUMERICAL SOLUTION AND DISCUSSION 

In order to get the shock structure, it is necessary to 

apply the boundary condition on wave. The exact solution 

of KDVB is not possible because this equation is not 

exactly integral solution. A particular solution of KDVB 

is possible, which are only for monotonic shock structure. 

Actually, a monotonic shock structure is possible only 

when dissipation dominates, and oscillatory shock 

structure is possible only when dissipation is weak. The 

boundary condition is: 
2
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Finally, Equation (22) becomes:
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Equation (26) is well known as the damped harmonic 

oscillator in which   describes the generalized 

coordinate and   describes the time. Equation (26) has 

two singular points: 

(i) 0,  0
d

dK


 → →

 

(ii) 02 ,  0
d

C
dK


 → →  

The first point shows the equilibrium downstream 

state and the second point shows the upstream state. If we 

assume, ( )K =  =  , the particle was located at 0 =

and if ( )K = − = − , the particle at point 02C = . 

The shock strength is: 

( ) ( ) 0 – 2Shock strength C = − + =  

The Mach number is independent of dispersion: 

  /   MA Nonlinear Wave Velocity Linear Wave Velocity=   

01
C

MA
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 (27)                                                                                                          

To get the nature of shock structure, the solution of 

Equation (26) is obtained by substitute the 02C = + , 

where 02C  . 
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The solution of equation (28) is proportional to ~    

exp (σK), where: 
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The oscillatory shock structure in which dispersion 

dominates over dissipation by different values of τ as 

shown in Figure 1 and this follows the Equation (29) with 

the singular point ( )02 ,  0C . It is clear from Figure 1(d), 

the oscillatory shock is fully developed at 1200 =  with 

singular point 02 0.1C =  giving shock speed 0 0.05C = , 

dispersion coefficient A=3 and burger coefficient 
210 −= . 

0
0 1 tanh

2

2

C K
C

H




  
= −  
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=

 (30)  

The monotonic shock structure in which dissipation 

dominates over dispersion by different values of   as 

shown in Figure 2 and this follows the Equation (30) with 

the singular point ( )02 ,  0C . In Figure 2, the dispersion 

coefficient 00,  A C=  is the amplitude and 02 / C  is 

width of the shock and other values are same as in Figure 

1. In this range, burger coefficient 
210 −= , dispersion 

coefficient 1 ~ 3A =  and 0 2H   [19, 20],   

monotonic shock structure is well agree with Equation 

(30). 

 

 
 

Figure 1(a). Oscillatory shock structure at τ=0 
 

 
 

Figure 1(b). Oscillatory shock structure at τ=500 

 

 
 

Figure 1(c). Oscillatory shock structure at τ=800 

 

-300 -200 -100 0 100 200 300

0.00

0.02

0.04

0.06

0.08

0.10





  = 

-300 -200 -100 0 100 200 300

0.00

0.02

0.04

0.06

0.08

0.10

0.12


 



  = 

-300 -200 -100 0 100 200 300

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16




 

  = 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 41, Vol. 11, No. 4, Dec. 2019 
 

 20 

 
 

Figure 1(d). Oscillatory shock structure at τ=1200 

      

 
 

Figure 2(a). Monotonic shock structure at τ=0 
 

 
 

Figure 2(b). Monotonic shock structure at τ=300 

 

 
 

Figure 2(c). Monotonic shock structure at τ=500 
 

 
 

Figure 2(d). Monotonic shock structure at τ=800 
 

IV. CONCLUSION 

The propagation of nonlinear low frequency 

electrostatic modes in strongly coupled quantum plasma 

has investigated. The behavior of strongly coupled 

quantum plasma is the collective nature, which is most 

important property of this plasma. This investigation 

supports the existence of shock wave due to ion-ion 

correlation in high energy density of strongly coupled 

quantum plasma. The oscillatory shock structure in which 

dispersion dominates over dissipation and monotonic 

shock structure in which dissipation dominates over 

dispersion by different values of τ are discussed. The 

results may be significant for understanding the scattering 

process involving intense laser beam in high energy 

density compressed plasma experimentally. In dissipative 

plasma, the propagation of small but finite amplitude 

nonlinear excitations maybe described by Korteweg-de 

Vries Burger equation.     
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