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Abstract- The development of modern technology is 

increasingly based on the achievements of fundamental 

and applied scientific research. Engineering structures 

and structures are becoming more complicated, therefore 

their design is difficult to imagine without a preliminary 

detailed calculation of the behavior of these structures or 

their elements in certain conditions. The study of 

oscillatory processes is of great importance for modern 

technology. Its development is associated with an 

increase in speed, pressure, temperature, with a 

continuous increase in the power and speed of machines 

and mechanisms, an increase in the aerodynamic effect of 

the flow of a flowing medium. However, there is a desire 

for better use of the bearing capacity of structures and 

reduce their weight. This entails an increase in the impact 

of dynamic loads on the elements of machines and 

structures.    
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I. INTRODUCTION                                                                         

Natural vibrations in an infinite elastic medium 

reinforced by a cross system of ribs of an isotropic 

cylindrical shell with a flowing fluid were considered in 

[1]. The work [2] investigated free vibrations of a 

transversely reinforced cylindrical shell in an infinite 

elastic medium with a flowing fluid. In [3], free 

oscillation of a longitudinally strengthened, orthotropic, 

moving fluid-contacting cylindrical shell inhomogeneous 

in thickness, is studied. Using the Hamilton-Ostrogradsky 

variational principle, the systems of equations of motion 

of a longitudinally strengthened, orthotropic moving-

fluid-contacting cylindrical shell inhomogeneous in 

thickness, is constructed. In this paper the inhomogeneity 

was considered by accepting the Young modulus and the 

density of the material as a function of coordinate 

changing in thickness [4].  

In this article, using the variational principle, the 

problem of the natural oscillation of a longitudinally 

supported orthotropic cylindrical shell in contact with an 

external medium and a flowing fluid is solved. The 

environmental influences are considered using the system 

of Lame equations in displacements.       

We obtain differential equations of motion for a 

longitudinally supported orthotropic cylindrical shell in 

contact with the medium based on the Ostrogradsky-

Hamilton variational principle. To apply the 

Ostrogradsky-Hamilton principle, we first write down the 

potential and kinetic energies of the system. 

 

II. PROBLEM STATEMENT 

As we know the potential energy an orthotropic 

cylindrical husk has the form: 
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where, R is radius of the middle surface of the shell, h is 

thickness of the husk, u, v and w are components of 

shifting of points of the middle appearance of husk. 
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The expressions for the potential energy of elastic 

deformation of the longitudinal longitudinal ribs are as 

follows [5]: 
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In Equations (1)-(2) the curves coordinate also 

rectilinear edges of the husk; the area and moment of 

inertia of the cross section of the longitudinal rod, 

respectively, relative to the axis and axis parallel to the 

axis and passing through the middle  of gravity of the 

area , as well as its moment of inertia during torsion; are 

the elastic and shear moduli of the material of the 

longitudinal rod, respectively. 
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The potential energy of external surface also bound 

loads applied to the skin is defined as the work performed 

by these loads when the system is transferred from a 

deformed state to an initial undeformed state and is 

presented in the form 

( )( )

( )

( )

2 2

1 1

2

2

1

1

2

2

1

1

0

1 1 1 1 1

2 2 2 2 2

x y

x y zm zc

x y

y
x x

x x
y

x
y y

y y
x

A q u q q q w dxdy

T u S Q w M dy

S u T Q w M dx



 

 

=

=

=

=

= − + + + −

− + + + −

− + + +

 





 (3) 

Similarly, the potential energies of external edge tons 

of applied to the ends of the corresponding longitudinal 

rod are determined by the following expressions (it is 

assumed that only edge loads are applied to the ribs):        

 

(

)
2

1

1

i i i i i i i ii

x x

i zi kpi kpi
x x

A T u S Q w M

M M

 

 
=

=

= − + + + +

+ +
 (4) 

The summary potential energy of the system is equal 

to the sum of the potential energies of the elastic 

deformations of the shell and ribs, as well as the potential 

energies of all external loads: 
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(5)                                          

     The kinetic energies of the shell and ribs are written as 
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where, t is the time coordinate, 1 at t= , 
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0 ,  i   are the density of the 

materials of which the shell is made, and the i- 

longitudinal rod, respectively. 

Kinetic energy of a ribbed orthotropic shell   
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The equations of motion of a ribbed orthotropic shell in 

contact with the medium are obtained based on the 

principle of stationarity of the Ostrogradsky-Hamilton 

action: 

0W =  (9)      

 

where, 

t

t
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=   Hamilton action, L K= −  is 

Lagrange function t   and t   are given arbitrary points in 

time.                                                 

Assuming that the main flow velocity is equal and the 

deviations from this velocity are small, we use the wave 

equation for the potential of perturbed velocities   by 

[6]: 
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In the case when harmonic oscillations are considered, 

the equations of motion of the medium take the form [7]: 
2 2 2 0l ta graddivu a rotrotu u− + =  (11) 

The potential and kinetic energy of the shell (5), (8), 

the equation of motion of the liquid (10), and the medium 

(11) are supplemented by contact conditions. 

On the contact surface of the shell-liquid, the 

continuity of radial velocities and pressures is observed. 

The condition of impermeability or smooth flow around 

the wall of the shell has the form: 
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Equal radial pressure from the liquid to the shell 

zm r R
q p

=
= −  (13) 

Assume that the contact between the shell and the 

medium is r=R sliding i.e. at 

zw s=  (14) 

0, 0,x rx r zс rrq q q   = − = = − = = −  (15) 

Supplementing with the contact conditions (12)-(15) 

the expression for the potential and kinetic energy of the 

shell (5), (8), the equations of motion of the fluid (10) and 

medium (11), we arrive at the problem of natural 

vibrations in an infinite elastic medium longitudinally 

orthotropic cylindrical shell, with a flowing fluid. In other 

words, the problem of natural vibrations in an infinite 

elastic medium of a lengthways reinforced cylindrical 

husk with a waving liquid decrease to the joint integration 

of the equations of the theory of shells, the medium, and 

the fluid under the above conditions on the surface of 

their contact. 

 

III. PROBLEM SOLUTION 

The solution of the problem. We will look for shell 

movements in the form:                                                
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Here are unknown constants; wave numbers in the 

longitudinal and circumferential directions, respectively.        

The solution of the equation of motion of the medium has 

the form [6]: 
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- in case without inertial medium 
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- in case of inertial medium 
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(18) 

We look for the potential of perturbed velocities in the 

form: 

( ) ( )1, , , cos sin sinr t f r n kx t    =  (19) 

Using (19) from condition (12) and for from (13) we 

have: 
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Using the contact conditions (14) and (15), the 

solution of the equation of motion of the medium (17) 

and (18), the formulas for the stresses [5], we can 

determine the contact pressure from the medium to the 

shell: 
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       After substituting (16), (22), (23) into (9), the 

problem reduces to a homogeneous system of linear 

algebraic equations of the third order 
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(24) 

Elements have a bulky appearance, therefore not 

given here. A nontrivial solution to the system of linear 

algebraic equations (24) of the third order is possible only 

in the case when the root of its determinant. The 

definition reduces to a transcendental equation, since it is 

included in the arguments of the Bessel function: 
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It should be noted that with Eq. (25), it transfers to the 

frequency equation of free vibrations located in a 

limitless without inertial elastic medium, longitudinally 

supported by an orthotropic cylindrical shell filled with a 

liquid at rest. The last equation then goes over to the 

equation of free vibrations of a longitudinally reinforced 

cylindrical shell filled with a liquid at rest. 
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IV. CONCLUSIONS 

       Consider some of the results of calculations 

performed on the basis of the above dependencies using a 

computer. For the geometric and physical parameters 

characterizing the materials of the shell, the medium was 

adopted: 
96.67 10cE =  N/m2, 4

0 0.26 10c = =  Nsec2/m4,  

3.4cF = mm2 , 5.1ycJ = mm4 , 1.39ch = mm,  

0 / 0.105m  = , 2.25l ta a= , 308 m/secta = , 8m =     

In Figure 1 the dependences of the frequency 

parameter on the relative flow velocity at various values 

of and. It is seen that an increase in speed leads to a 

decrease in frequency. It is important to note the values at 

which the oscillation frequency vanishes. Obviously, 

there should be a loss of stability of the shell. 

Finally, Figure 2 illustrates the effect of the number of 

longitudinal rods on the parameter of the frequency of 

oscillations of the considered system. It can be seen that 

with an increase in the parameter of the oscillation 

frequency of the system, it first increases, and then begins 

to decrease at a certain value. This is explained by the 

fact that, with increase, the weight of the rods increases 

and this leads to a significant effect of inertial properties.  
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Figure 1. The dependence of the frequency parameter on the flow 
velocity for a longitudinally reinforced shell in an endless inertial-free 

medium with a moving fluid 
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      Figure 2. Dependence of the frequency parameter on the number of 
         longitudinal rods of a longitudinally reinforced shell in an infinite 

                          inertia-free medium with a moving fluid 
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