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Abstract- In the paper we study one of the dynamical 

strength characteristics, the frequency of natural 

vibrations of a fiberglass medium-contacting cylindrical 

shell inhomogeneous in thickness and along the generator 

and strengthened with annular ribs subjected to the axial 

compression under Navier conditions. The motion of the 

medium is described by the Lame equations in 

displacements. Using the Hamilton Sharp Urban 

Variational Principle, frequency equations are 

constructed to calculate the natural frequencies of the 

oscillations of the system under study. In the process of 

computing linear laws are adopted for the heterogeneity 

function. When studying free oscillations of a medium - 

contacting cylindrical shell inhomogeneous in thickness 

and along the generator, strengthened with transverse 

system of ribs, we consider two cases: a) the effects of 

inertial actions of the medium on the oscillation process 

can be neglected; b) the influence of the inertial 

properties of the medium on the oscillation process is 

significant. In both cases, the frequency equations are 

constructed and implemented numerically. The 

calculation results of the natural vibration frequencies are 

presented in the form of a dependence on the 

inhomogeneity parameter, on the number of transverse 

ribs for various values of the wave formation parameters 

and various elastic moduli of the medium material. 

Characteristic curves of dependence are constructed.    
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I. INTRODUCTION                                                                         

       Composites based on polymer, carbon, metal, and 

organic and porous aluminum are widely used in various 

branches of technology. To create heterogeneity in the 

load-bearing structures, diffusion or other technologies 

introduce another material with high strength 

characteristics into its surface layers, resulting in 

technological heterogeneity in the structure. There is a 

need to develop methods for calculating such 

inhomogeneous shells and to study the effect of 

heterogeneity on the frequencies of their natural 

vibrations. We need algorithms for determining resonant 

frequencies, leading to the destruction of inhomogeneous 

shells. To give greater rigidity, the thin-walled part of the 

shell is reinforced with ribs, which significantly increases 

its strength with a slight increase in the mass of the 

structure, even if the ribs have a small height. 

     Note that the works [1-3] are devoted to the study of 

the parametric oscillation of a rectilinear rod nonlinear 

and non-uniform in thickness in a viscoelastic medium 

using the Pasternak contact model. The influence of the 

main factors - elasticity of the base, damage to the 

material of the rod and shell, the dependence of the shear 

coefficient on the vibration frequency on the 

characteristics of the longitudinal oscillation of the points 

of the rod in a viscoelastic medium is studied. In all cases 

studied, the dependences of the zone of dynamic stability 

of rod oscillations in a viscoelastic medium on structural 

parameters on the load-frequency plane are constructed. 

In [4], free oscillation of a longitudinally strengthened, 

orthotropic, moving fluid-contacting cylindrical shell 

inhomogeneous in thickness, is studied. Using the 

Hamilton Sharp Urban Variational Principle, systems of 

equations of motion of a longitudinally strengthened, 

orthotropic moving-fluid-contacting cylindrical shell 

inhomogeneous in thickness, is constructed. 

The thickness inhomogeneity of the shell material was 

taken into account, assuming that the Young's modulus 

and the density of the shell material are functions of the 

normal coordinate. Frequency equations are constructed 

and implemented numerically. In the process of 

calculation, linear and parabolic laws are adopted for the 

inhomogeneity function. Characteristic curves of 

dependence are constructed. If the shell has geometric 

and physical nonlinearity, the equations describing its 

stress-strain state become complex nonlinear partial 

differential equations and for solving it in [5] the method 

of successive loading is constructed. The derivation of 

these equations is given in [6, 7]. To reduce the 

linearization error of the equation and reduce the 

counting time, a two-step method of sequential parameter 

perturbation has been developed [8]. The influence of the 

contour support condition on the stability of polymer 

concrete shells was studied in [9]. In this paper [10] the 

inhomogeneity was taken into account by accepting the 

Young modulus and density of the material as a function 

of coordinate changing in thickness.  
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II. PROBLEM STATEMENT 

To apply the variational principle of Hamilton Sharp 

Urban, we write the total energy of the structure under 

study since the structure under study consists of a 

heterogeneous cylindrical shell and reinforcing ring 

elements, the numbers of which vary. In addition, the 

studied structure is in contact with a solid medium 

(Figure 1(a)). 

To take into account the inhomogeneity in the 

thickness of the cylindrical shell, we will proceed from 

the three-dimensional functional. In this case, the 

functional of total energy of cylindrical shell has form: 
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Figure 1. Strengthened inhomogeneous cylindrical shell 

 

There are various ways to account for the 

heterogeneity of the shell material. One of them is that 

the Young's modulus and the density of the shell material 

are accepted as functions of the normal and longitudinal 

coordinates [11]. It is assumed that the Poisson's ratio is 

constant. In this case, the strain-stress ratio has the form: 
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where, 0E  is the elastic modulus of the homogeneous 

shell material, 0  is the density of the material of the 

homogeneous shell. 

The functional of the total energy of the cylindrical 

shell, taking into account (5), has the form: 
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The expression for the potential energy of elastic 

deformation of the jth transverse rib is as follows: 
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The kinetic energies of the ribs are written as: 
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In expressions (7) and (8), , , ,j zj yj kpjF J J J  are the 

area and moments of inertia of the cross section of the jth 

transverse rod, respectively, with respect to the axis Oz

and axis Oy parallel to the axis and passing through the 

center of gravity of the section, as well as its moment of 

inertia during torsion; ,j jE G are the elastic and shear 

moduli of the material of the transverse rod, respectively, 

j  is the density of the materials from which the jth 

transverse rod was made. 

The potential energy of external surface loads acting 

from the medium applied to the shell is defined as the 

work performed by these loads when the system is 

transferred from a deformed state to an initial 

undeformed state and is represented as: 

( )
2
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 = − + +    (9) 

We write the potential energy in the shell from the 

compressive stress x : 
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x
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   (10) 

The total energy of the system is equal to the sum of 

the energy of elastic deformations of the shell and all the 

transverse ribs, as well as the potential energies of 

external loads acting from the medium: 
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where, 2k   is the number of transverse ribs. 

The equation of motion of the medium takes the form 

[11]: 
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where, 
2
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+
= = , ( ), ,x rs s s s  is the 

displacement vector, ,s s   are the Lame coefficients for 

the medium material, and s is the density of the medium 

material. 

The solution of the equation of motion of the medium 

(12) has the form [12]: 
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b) in the case of an inertial medium 
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In expressions (13), (14) 1 1 1, , , , ,s s s s s sA B C A B C  are 

constants, nK  is a modified Bessel of the second kind 

function of the nth kind, 2 2 2 2 2 2,   e e t tk k   = − = − . 

The expression of the total energy of system (11), the 

equation of motion of the medium (12) are supplemented 

by contact conditions. On the contact surface of the shell 

- the medium is observed continuity of displacement and 

pressure ( ):r R=    

,  ,  x rs u s s w = = =  (15) 

,  ,  x rx r r rrq q q   = = =  (16)                                             

It is considered that the conditions of hard contact 

between the shell and the rods are satisfied: 

1

2

2

1
1

( ) ( , ) ( , )

( ) ( , ) ( , )

( ) ( , );  ( , )

( ) ( , );  0.5

j j j j

j j j j

j j j j

kpj j j j

u y u x y h x y

x x y h x y

w x w x y x y

x x y h h H



  

 

 

= +

= +

= =

= = +

 

where, 
1
jH  is the distance from the axes of the jth rod to 

the surface of the cylindrical shell, j , kpj  are the angles 

of rotation and twist of the cross section of the jth rod, 

through the displacements of the shell are expressed as 

follows: 
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It is generally accepted that on the lines 0x =  and 

x l=  the Navier boundary conditions are satisfied: 

11 110,  0,  0,  0w N M = = = =  (17) 

where, l is the shell length, 11 11,T M  are the forces and 

moments acting on the cross sections of the cylindrical 

shell (Figure 1(b)). 

The frequency equation of a ribbed inhomogeneous 

shell with a flowing fluid is obtained on the basis of the 

principle of stationarity of the Hamilton Sharp Urban 

action: 

0W =  (18) 

where, 

t

t

W Jdt





=   is the Hamiltonian action, t   and t   

are the  given arbitrary moments of time. 

Supplementing by contact conditions (5) and (6) the 

total energy of the system (11), the equations of motion 

of fluid (12), we arrive at the problem of natural 

vibrations of a medium-contacting inhomogeneous 

cylindrical shell strengthened with annular ribs. In other 

words, the problem of natural oscillations of a medium-

contacting inhomogeneous cylindrical shell strengthened 

with annular ribs is reduced to the joint integration of 

expressions for the total energy of the system (11), the 

equation of medium (12) subject to the conditions (15) 

and (16) on their contact surface and boundary conditions 

(17). 

 

III. PROBLEM SOLUTION 

In expression (11), the variable quantities are 

,  ,  u w . We approximate these unknown quantities as 

follows: 

0 1 1
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where, 0 0 0, ,u w  are unknown constants; ,n  are wave  

numbers in the longitudinal and circumferential 

directions, respectively, / ,x R = / ,kR m R l = =

1 0 ,  t t =  is the desired frequency. 
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To calculate work (9) using (16), we find the contact 

surface forces ,  ,  x rq q q . The constants, which are 

included in their expression 1 1 1, , , , ,s s s s s sA B C A B C using 

contact conditions (15), 
0 0 0, ,u w  are expressed through 

shell constants. 

With simplification (11), the following dependences 

are accepted: 

1 2( ) 1 ,  ( ) 1
z x

f z f x
t l

 = + = +  (20) 

where, ,     are  constant parameters of heterogeneity in 

the direction of normal and along the generatrix of the 

shell, respectively, and , [0,1].     

Substituting solution (20) into (11), taking into 

account expression (19) for the total energy (11), we 

obtain a second-order polynomial with respect to 

constants 0 0 0, ,u w : 

2 2 2
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11 22 33 44 55 66,  ,  ,  ,  ,  i i i i i i       are cumbersome, so we 

do not give them. In them, 1i =  corresponds to option a), 

and 2=i corresponds to option b). 

If we vary П  the expression by constants 0 0 0, ,u w  

and equate the coefficients of independent variations to 

zero, we obtain the following system of homogeneous 

algebraic equations 
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Since system (20) is a homogeneous system of linear 

algebraic equations, a necessary and sufficient condition 

for the existence of its nonzero solution is the equality of 

its principal determinant to zero. As a result, we obtain 

the following frequency equation 
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 We write Equation (22) in the form: 
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IV. CONCLUSIONS 

      Equation (23) was calculated numerically. The 

parameters contained in the solution of the problem were 

adopted: 
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Figure 2. The dependence of the frequency parameter on k2 

 

The calculation results were shown in Figure 2 in the 

form of the dependence of the frequency parameter on the 

number of reinforcing rods k2. On the shell surface, in 

Figure 3 in the form of the dependence of the frequency 

parameter on the heterogeneity parameter in the direction 

of the generatrix of the shell .  As can be seen from 

Figure 3, with an increase in the number of transverse 

ribs, the value of the frequency parameter increases. In 

these figures, dashed curves correspond to option a), and 

solid ones option b). It can be seen from the figures that 

taking into account the inertial actions of the medium 

leads to a decrease in the eigenfrequencies of the 

oscillations of the system under study compared to the 

oscillation frequency of the same system when the 

medium is inertia-free. 

 
0.55  

 
                       

1             

0.65  

 

 
0.55  

 

 

0.45                       2 15k =                       0.6 =       

                                                                                                        

 

                                                                                 

 
 

Figure 3. The dependence of the frequency parameter on β 
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