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Abstract- In this paper, a novel observer has been 

designed for the online estimation of time delay in SISO-

LTI continuous time systems with unknown and time 

variant delay in the control input. It is obvious that 

Laplace transfer function of a delayed system includes a 

time delay factor. In this article, it is assumed that the 

only unknown and time variant parameter in the system is 

the very system’s time delay parameter. The main idea 

used in designing the proposed observer is based on the 

establishment of duality principle between controller and 

observer, such that a direct adaptive controller structure 

(MRAS) is indirectly used for designing an estimator. For 

this, the main sections in an MRAS control system are 

organized the way that designing the controller will lead 

to designing the delay estimator in the dual problem. In 

fact, adaptation law in designing the controller will 

express the same estimator mechanism in the dual 

problem. Also, in designing the estimation mechanism, 

the two methods, one based on Lyapunov Theory and the 

other based on MIT rule, are used. Finally, simulation 

results on a Wi-Fi network as a benchmark system, show 

desirable performance of the proposed estimator in 

dealing with time varying and uncertain delays. 

 

Keywords: Time Varying Delay, Estimation, Duality 

Principle, Adaptation Law, Networked Control System 

(NCS), Wi-Fi Network. 

 

I. INTRODUCTION                                                                         

Controlling delayed systems is among the issues of 

the day in the world of Control Engineering. The 

existence of delay in most real and manmade systems has 

attracted the attention of many researchers to this issue. 

The importance of this issue arises from the fact that 

existence of delay in the control loop is accompanied by 

the system divergence from the desirable performance, 

and if the necessary preparations are not considered, it 

may even lead to system instability. Since inherent delay 

is an inseparable component of a delayed system, 

considering delay in the controller design process is the 

only strategy in encountering this issue. Even if the open 

loop system could be modeled without any delay, this 

point should be kept in mind that the closed loop control 

process, i.e. measuring, decision making and reaction of 

the controller, causes, by itself, a delay in the plant input; 

a delay that can also be affected by the varying 

environment. Time delay systems introduce a class of 

systems with infinite dimension, which are related to 

mechanisms such as dispersion, transmission, traffic, 

exhaustion, flexibility, inertia and other factors that are 

created after time drop-off.  

Generally, delayed systems, from point of time delay 

certainty and variability, are categorized to four groups: 

- Systems with known and time invariant delay, 

- Systems with known and time variant delay, 

- Systems with unknown and time invariant delay, 

- Systems with unknown and time variant delay. 

Each of which appears in different systems. In the 

fourth group, discussing a control algorithm which is 

capable of fulfilling stability or tracking performance is 

of great importance. In general, delay may exist in the 

state vector or in the input, and in this article, time delay 

means the delay in control input. In most real systems, 

time delay affects the system performance either 

inherently or under the impression of environmental 

conditions. The problems which mainly emerge in the 

closed loop control process of delayed systems are caused 

by the following [1]: 

- The effect of the disturbances is not felt until a 

significant time has expired. 

- The effect of the control signal takes some time to be 

felt in the controlled variable. 

- The control strategy that is applied based on the actual 

error tries to improve a behavior that originated sometime 

before. 

- Since system equations are nonlinear in relation to time 

delay parameters, sensitivity of control characteristics to 

these parameters is relatively high, therefore, researchers, 

considering the uncertain nature of time delay, usually 

look for robust designing. 

- Change of open loop transfer function time delay in 

closed loop control systems leads to phase margin change 

and gain margin indirect change too; this may lead to 

closed loop system instability or may decrease relative 

stability, and hence cause transient response 

characteristics to become undesirable. 
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Considering that the system behavior is nonlinear, in 

relation to the delay factor, by delay change over time, 

designing technics for making appropriate control 

reaction in this situation gets more complicated because 

the designer will also face a time variant system (certain 

or uncertain). When delay is time varying and unknown, 

it is often dealt with as a parameter with uncertainty, thus 

the designing robustness against the change of this 

parameter should be discussed. Robust control always 

provides appropriate control strategies for parametric 

uncertainties [2, 3], but if in particular these uncertainties 

change slowly, adaptive control would definitely be a 

more appropriate option.  

An important subdivision in indirect adaptive control 

systems is the plant estimator. In this paper, it is assumed 

that the only unknown parameter of the system is its time 

delay. In this research, In the discussion of the estimation 

of the time delay parameter, a new method is proposed 

with a relatively high speed and accuracy.  

Further in this section, in subsection I(A), a brief 

history of what has been done in this regard so far is 

presented, and in subsection I(B), wireless networked 

control systems are focused on. In section II, the structure 

of the plant is introduced, and then in section III, 

designing the proposed estimator, for estimating time 

varying delay, is presented. Finally, in section IV, the 

simulations results for a sample system are shown, and in 

section V, performance of the proposed estimator is 

analyzed and concluded. 

 

A. Research Literature 

The main studies made on systems with time-varying 

delay are divided into three general categories: 

- Category 1 (Identification and Estimation of the Delay): 

The difficulty of time delay identification comes from the 

fact that the process model, in relation to delay parameter, 

is nonlinear.  

Based on the articles studied in [4], delay 

identification methods are divided to four groups: (a) 

time delay approximation methods, (b) time delay 

explicit parameter methods, (c) area and moment 

methods and (d) Higher-order statistics methods.  

Several methods of this categorization have been 

presented in articles [4, 11], such that in case of adaptive 

control and real time control, methods of groups (a) and 

(b) are mainly used. Particularly, for time varying delay 

estimation in LTI systems, many articles have been 

published [12, 19].  

- Category 2 (Criteria Presented for Stability and Robust 

Stability): Generally, time delay in open loop systems is a 

non-minimum phase factor.  

It has been proved in many studies that control loops 

stability, at the presence of delay, is too sensitive to time 

delay parameters, so this has made researchers to try hard 

to present reliable criteria for creating a safe stability 

margin, in the area of designing controllers for such 

systems [20, 26]. Also, particularly for LTI systems with 

uncertainty in time delay factor, a lot of effort has been 

put on presenting criteria for guaranteeing robust stability 

[27, 30].  

- Category 3 (Control Methods Presented with Goals like 

Tracking): The importance of controlling systems with 

time varying delay, provoked researchers to also design, 

for satisfying the supreme control purposes such as 

reference input tracking, controllers which are acceptably 

robust and adaptable against variations of the sensitive 

time delay parameter. Some of these controllers are as 

follows: Robust Controllers [30, 33], Fuzzy Controllers 

[34], Predictive Controllers [34, 39], Sliding Mode 

Controllers [40, 41], Optimal Controllers [42, 44]. In 

particular, for LTI systems with unknown and time 

varying delay, the presented controllers are mostly of 

adaptive type [45, 50]. 
 

B. Networked Control Systems (NCSs) and Wireless 

Sensor Networks (WSNs) 

Networked control systems (NCSs) are spatially 

distributed systems in which actuators, controllers, and 

sensors exchange input-output data through a shared 

some digital communication networks.  NCSs have been 

applied to many engineering systems such as wireless 

sensor networks (WSNs), remote control problems, 

internet communications, traffic control systems, and 

automatic aerial vehicles. Especially, wireless networked 

control systems (WNCSs) have been increasingly applied 

in different issues and many applications. 

 As an alternative solution to wired Networked 

control systems, wireless networked control systems, are 

considered as elementary solutions of NCS applications 

because of their simple structure and portability. 

However, the reliability and real time performance of 

WNCSs are lower than for wired NCSs because with 

wireless networks, the sizes of network delays suddenly 

change over time owing to the dynamic state variation of 

wireless networks.  It is generally known that even a very 

small time delay in control loops can make the whole 

system oscillating or unstable, and it is obvious that 

fluctuating time-varying delays severely reduce the 

performance and stability in WNCSs. 

In order to deal with the network delays, different 

control schemes for WNCSs are suggested; These include 

fuzzy control, model predictive control, robust control, 

optimal control, smith control and adaptive control. When 

constructing these control schemes, it is necessary to 

identify the network unknown delays. And, of course, for 

identification, it is necessary that the time delay is 

continuously observed [51]. Figure 1 shows the closed 

loop structure of WNCS over the Wi-Fi network in the 

presence of the controller. 
 

 
 

Figure 1. Structure of WNCS over Wi-Fi network [51]. 
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II. PROBLEM STATEMENT 

The plant in this research is an LTI and stable system 

(BIBO Stable). State space equations and Laplace 

transfer function of the assumed system are in the form of 

following: 

( ) ( ) ( )( )
( ) ( )

      

                               

g g

g

X t A X t B u t d t

y t C X t

 = + −


=

   (1)                

( ) ( ) ( )d t s
P s G s e

−
=   (2)                                               

which t is the variable of real time domain, ( ) nX t R  is 

the state vector of the system, scalars u(t), y(t) are control 

input and plant output, respectively, and    ,  ,  g g gA B C  are 

the constant matrices with appropriate dimensions. S is 

the variable of Laplace domain and P(s) is the system 

transfer function, in which G(s) is obtained from 

Equation (3); 

( ) ( )
1

g g gG s C sI A B
−

= −   (3)                                               

The  ( )d t s
e
−

 factor is the Laplace transfer function of 

time delay. In Equations (1) and (2), d(t) is the same 

input time delay of the system, which in this study is 

assumed to be time variant and unknown, and it is also 

assumed that the considered system, except the time 

delay factor, is a linear and time invariant system. 

 Generally, in control problems related to such 

systems, the following assumptions for time delay are 

always in place [52]: 

1. ( )min max0 d d t d         

2. ( )
•

1d t−        

The main purpose in this research is designing a fast 

and accurate time delay estimator for an unknown and 

time varying delay. 

 

III. ESTIMATING UNKNOWN AND TIME VARYING 

DELAY USING PROPOSED ESTIMATOR 

In general, estimator is a dynamical system which, 

using the real system input and output, estimates one or 

more unknown parameter(s) of the real system. 

Particularly, in this study, one of the important goals is 

designing an estimator system which, using the input and 

output of a system with Equation (2), the only unknown 

and time variant parameter of the system is identified in 

online mode and with an acceptable speed and accuracy. 

A simple block diagram of the system and delay 

estimator is shown in Figure 2. As can be seen in Figure 

2, estimator inputs are the same input and output of the 

real system, and the only output of estimator is an 

estimation of time delay ˆ( )d t . 

In this study, indirectly and using a trick, the structure 

of direct adaptive controller (MRAS) has been used to 

design an estimator.  Figure 3(a) shows the general 

structure of a direct adaptive controller [53]. This control 

block diagram, ( )Ru t  is the same reference input of the 

desired output. Block diagram of Figure 3(b) is 

particularly designed for this study. 

 

 
 

Figure 2. General diagram of the time delay estimator 

 

According to Figure 3(b), considering real system 
P(s) as the reference model and system G(s) as the 

controlled system, and considering that the estimation of 

time delay factor, 
( )d̂ t s

e
−

 is an adaptive controller with 

the adjustable ( )d̂ t  parameter, authors will look for 

designing an adaptation law, such that by adjusting the 

only controller parameter (which is an estimation of time 

delay), system output G(s) converges towards the real 

system. The purpose of designing this block diagram is 

just to achieve an estimation of the real system time 

delay, and Designing controller is a separate process on 

which the authors have not focused in this study, 

therefore, the controller existing in block diagram of 

Figure 3(b) is shown by ( )C s  Since the purpose 

followed in this block diagram is delay estimation, ( )C s

will be a semi controller, and its output is also a semi 

control signal shown by .Cu  In fact, the main output of 

this block diagram will be the same output of adaptation 

law block, which is the same time delay estimation. It 

should be noted that in Figure 3(b), Cu  plays the role of 

reference input, which in fact is the same control input of 

the real system P(s) in the main control process (signal 

created by the main controller), and SYS1 is the reference 

model (in fact the system under control P(s)), SYS2 is the 

adaptation law block (in fact estimator mechanism), 

SYS3 is the semi plant (in fact the same real system 

without delay factor or G(s)), and SYS4 is a semi 

controller (In fact, an estimate of the delay factor). 

Lyapunov Function and MIT rule are the two 

common methods for computing adaptation law, 

presented in [53]. In this study, designing the adaptation 

law, using both methods, will be focused on. Considering 

the fact that semi controller ( ) ( )d̂ t s
C s e

−
=  could not be 

directly used in designing and computing adaptation law, 

alternatively, first (second or higher) order Pade 

approximations may be used as a semi controller 

structure. 

In this study, first order Pade approximation is used. It 

is obvious that for increasing the precision of estimation, 

higher order approximations may be used. Therefore, 

Equation (4) will show the structure of ( )C s  semi 

controller. 

( ) ( ) 

ˆ

ˆ  ˆ
ˆ

1
2      ,  

1
2

d
s

C s d d t
d

s

−

= =

+

    (4)                                      
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A. First Method: Using Normalized MIT Rule in 

Designing Time Delay Estimation Mechanism 

According to what has been presented in [53], 

adaptation law in MIT method is expressed using 

Equation (5). 

( ) ( ) ( ) t e t t =   (5)                                                          

where, ( )t   is the vector of adjustable parameters of 

controllers,   is the adaptation gain, e(t) and ( )  t  

vector are computed respectively through Equations (6) 

and (7). 

( ) ( ) ( )me t y t y t= −    (6)                                                      

( )
( )

( ) ( )
( ) ( ) 

 
  ,    

 T

t d
t t e t

dt t




  
 = =−

+
    (7)  

where, y(t) is the output of G(s) system and ( )my t  is the 

output of P(s) system, and  is a constant number larger 

than zero. Considering Figure 3(b), error signal e(t) could 

be written as Equation (8). 

( ) ( ) ( ) ( ) ( ) ( ) ( ).  .  m C me t y t y t C p G p u t y t= − = −  (8)         

Assuming that ( ) ( )ˆt d t = = and substituting Equation 

(4) in Equation (8), error signal will be equal to Equation 

(9). 

( ) ( ) ( ) ( )
1  

2  .   .  

1  
2

C m

p

e t G p u t y t

p





 
− 

= − 
 + 
 

    (9)                        

It should be noted that in the above equations, p is a 

derivative operator, i.e., .
d

p
dt

= . Using Equation (7), 

vector ( )t is calculated as follows: 

( ) ( )  ( ) ( )
2

 
.

 
1  

2

C

d p
t e t G p u t

d
p


 

= − = −
 
+ 

 

  (10)           

which could be rewritten as Equation (11). 

( ) ( ) ( ) ( ). . Ct H p G p u t = −   (11)                                          

where, H(p) is defined according to Equation (12). 

( )
2

1  
2

p
H p

p


=
 
+ 

 

  (12) 

Since   is unknown, for maximizing the estimation 

speed, the value of   parameter in H(p) is assumed to be 

min  or the same mind . Eventually, considering that 

( )t is scalar, ( )t forms according to Equation (13).  

( )
( )

( ) ( )

( )

( )
2T

t t
t

t t t

 

    
 = =

+ +
  (13) 

Therefore, according to Equation (5), we have: 

( ) ( ) ( ) ( ).  t p t e t t  = =   (14)                                              

As a result, adaptation law, for adjusting semi 

controller parameter, is calculated according to Equation 

(15). 

( ) ( ) ( ) ( )
( )

( )
2

   
t

t e t t e t
p p t

 


 
=  =

+
 (15)                        

It should be noted that Equation (15) is expressive of 

the estimator mechanism proposed by MIT method. 

Assuming that the operator p (in time domain) and the 

variable s (in Laplace domain) are equivalent, Figure 4 is 

indicative of the proposed estimator block diagram, using 

MIT method. 

 

 

 
                                                                (a)                                                                                                 (b) 

 

Figure 3. (a) General structure of MRAS adaptive controller [53], (b) General structure of the estimator used in this study 

 

B. Second Method: Using Lyapunov Stability Theory 

in Designing Time Delay Estimation Mechanism 

According to [53], the general designing process in 

this method is such that first, the error dynamic equation 

( )e t  is calculated, then, defining a suitable Lyabunov 

function, this equation is tried to become stable, 

independent of  inputs and outputs.  

It should be noted that the mentioned Lyapunov 

function is defined with the purpose of minimizing some 

extra terms in error differential equations, and adaptation 

law is also extracted from Lyapunov function derivative, 

such that building this law should always cause 

Lyapunov function derivative to be negative (semi) 

definite. 
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According to Figure 3-b and by defining

( ) ( ). ( )cR s G s U s=  Equations (16) and (17) are 

respectively expressive of G(s) and P(s) system output in 

Laplace area. 

( ) ( ) ( )
ˆ

.
d t s

Y s e R s
−

=  (16)                                                        

( ) ( ) ( ).
d t s

mY s e R s
−

=  (17)                                                       

where, ( ) ( ),   cU s Y s  and ( )mY s  are respectively 

Laplace transfer of   ( )Cu t , y(t) and ( )my t  signals. 

Assuming that ( ) ( )d̂ t t = =  is a delay estimation and                  

( ) ( )r rd t t = = is the delay real value at any moment, 

considering first order Pade approximation for time delay 

factor, Equations (16) and (17) are respectively rewritten 

as follows: 

( ) ( )

 

 

1
2 .

1
2

s

Y s R s

s





−

=

+

 (18)                                                        

( ) ( )
1

2 .

1
2

r

m
r

s

Y s R s

s





−

=

+

 (19)                                                     

Considering the error definition in Equation (6) and 

using Equations (18) and (19), easily and with a little 

computation, error dynamic equation will be obtained 

according to Equation (20): 

( ) ( ) ( ) ( )
2 2 2 2 2

r r r

e t y t r t e t
    

   
= − − + − −   

   
 (20)         

which r(t) is the inverse Laplace of R(s). Considering 

what was stated in the second section of the paper, r

should always be positive, so a positive definite Lypunov 

function should be defined such that error differential 

equation, independent from r(t) and y(t), to be always 

stable, and  

Error tends to zero. Considering these issues, a 

Lyapunov function is taken into account according to 

Equation (21). 

( )( ) ( )
2

21 1 2 2
,

2 2 r

V e t e t
  

 
 = + − 

 
 (21) 

which, γ is the adaptation gain and  is a function of 

and r  difference. It is obvious that if this Lyapunov 

function is minimized, first, error will be minimized and 

secondly, delay estimation will tend to the real error 

value. Easily and with a little computation, using 

Equation (20), the above Lyapunov function derivative, 

in relation to time, could be written as Equation (22). 

  

( )( ) ( )

( ) ( ) ( )( )

2

2

2
,

2 2 1
. - 2

.

r

r

V e t e t

e t r t y t





   

 = − +

  
+ − −  
  

 (22) 

Considering that r  is positive, for ( )( ),V e t   to 

become a negative (semi) definite function, Equation (23) 

should be established: 

( ) ( ) ( )( )2 . .
2

e t r t y t


 = −  (23)                                           

By establishing Equation (23), V  will be the 

equivalent of Equation (24) and thus, as seen, V will be a 

negative (semi) definite function. 

( )( ) ( )
22

,
r

V e t e t


 = −   (24)                                              

Considering  
2


=    as a new adaptation gain and 

using Equation (23), adaptation law for adjusting semi 

controller could be written as Equation (25). It should be 

noted that this equation also presents the same delay 

estimator mechanism.  

( ) ( ) ( ) ( ) ( )( )2
. . .  t t e t r t y t dt   −=   (25) 

Assuming that the integrator operator  (in time 

domain) and the transfer function 
1

s
 (in Laplace domain) 

are equivalent, Figure 5 is indicative of the proposed 

estimator block diagram in terms of Lyapunov method. It 

should be noted that for both block diagrams 3 and 4, the 

output of the estimator is the ( )t signal. 

 

 
 

Figure 4. The proposed delay estimator block diagram using MIT 

method 

 

 
 

Figure 5. The proposed delay estimator block diagram using Lyapunov 

Method 
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IV. SIMULATION RESULTS 

In this section, for implementing different simulations 

and assessing the proposed estimator, a first order system 

with the following transfer function is selected: 

( ) .1

1

s dP s e
s

−=
+

 (26)                                                           

where ( )d d t= is an unknown and time variant delay. In 

order to design the delay estimator, the bound of delay 

variations should be specified, so it is assumed that     

   min max0 sec     1 secd d d=   = .  

For example, in Figure 6, the effect of sinusoidal time 

variant delay and periodic pulse are shown on a 

sinusoidal input.  

As can be seen, the input sinusoidal signal undergoes 

a sever change and loses its standard form after passing 

through the delayed block. In such condition, also some 

challenges will definitely appear in the control issues 

such as reference signal tracking issues.  

In Figure 6(a), the input signal equals            

( ) ( )5sinu t t= , as shown in Figure 6(a). The time delay 

signal exerted for forming Figure 6(b) equals         

( ) ( )0.5 0.45sin 2d t t= + , and in forming Figure 6(c), 

time delay signal consists of a two-level periodic pulse 

wave (a level with the value of 0.05 and a level with the 

value of 0.95, respectively) with a period of 1 second and 

a pulse width of half a second. 

 

 
 

Figure 6. Comparing the input signal before delay exertion and after 

passing through the delayed block 

(a) delay-free input signal, (b) input signal with sinusoidal delay 

(c) input signal with periodic pulse delay 

 

Continue, the simulation, with respect to estimation of 

the two different time delay results, are presented for a 

system with equations presented in (26). It should be 

noted that, for identification, the system input signal is 

considered to be sinusoidal with equation                

( ) ( )5sin  u t t= . In all figures and tables, the two 

proposed methods (method 1 and method 2) and an 

efficient method (presented in [18]) are compared with 

each other. 

Figure 7 indicates the performance of the proposed 

estimators (1) and (2) and also the performance of the 

method of presented in [18], in the sinusoidal time delay 

estimation. In this figure, the real delay of the system 

equals ( ) ( )0.5 0.45sin 2d t t a= + . In sections a, b, c of 

Figure 7, the performance of the second proposed 

estimator, the first proposed estimator and the estimator 

presented in [18] are observed, respectively. To 

accurately compare performance of these estimators, the 

mean of squares of estimation error (MSE) for all three 

estimators are calculated, which are shown in Table 1. 

Figure 8 also indicates the performance of these 

estimators in estimating periodic pulse time delay. In this 

figure, the real system delay equals a two-level periodic 

pulse wave (a level with the value of 0.05 and a level 

with the value of 0.95, respectively) with a period of 1 

second and a pulse width of half a second. In sections a, 

b, c of Figure 8, the performance of the second proposed 

estimator, the first proposed estimator and the estimator 

proposed in [18] are respectively observed. For this type 

of delay also, to accurately compare the performance of 

the estimators, the mean of squares of estimation error 

(MSE) for all three estimators was calculated, the results 

of which are presented in Table 2. According to what 

presented in figures and Tables, it could be said that the 

accuracy of the second proposed estimator is higher than 

that of the two others.  

It should be noted that if the uncertainty bound for 

delay parameter is considered larger, the accuracy of the 

second proposed estimator (Based on Lyapunov theory) 

would be, by a lot of difference, higher than that of the 

two others, because this estimator, contrary to the two 

others, is designed independent of time delay changes 

average; that is the second estimator is somehow 

designed to be more robust. 

 This is completely observable in Figure 9. 

Performance of all three estimators, for a Multi-level 

stepping time delay, could be observed in this figure. As 

can be seen, as the uncertainty bound for time delay gets 

larger, the performance supremacy of the second 

proposed estimator, in comparison to the two others, 

becomes clearer and more prominent. Also, accuracies of 

these three estimators for this type of time delay are 

compared in Table 3. 

 

 
 

Figure 7. Comparing the two proposed estimators and the estimator 

presented in [18] in sinusoidal time delay estimation problem 
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Figure 8. Comparing the two proposed estimators and the one presented 

in [18] in the periodic pulse time delay estimation problem 

 

 
 

Figure 9. Comparing the two proposed estimators and the one presented 

in [18] in multi-level stair-shaped time delay estimation 
 

Table 1. Comparing the accuracy of the proposed estimators and the one 

presented in [18] in sinusoidal time delay estimation problem 
 

Delay Estimator Mean of Squares of Estimation Error (MSE) 

Proposed Method 1 
(P.M.1) 

0.0540 

Proposed Method 2 

(P.M.2) 
0.0113 

The Method Presented 

in Ref. [18] 
0.0222 

 

Table 2. Comparing the accuracy of the proposed estimators and the one 
presented in [18] in periodic pulse time delay estimation problem 

 

Delay Estimator Mean of Squares of Estimation Error (MSE) 

Proposed Method 1 

(P.M.1) 
0.1041 

Proposed Method 2 
(P.M.2) 

0.0607 

The Method Presented 

in Ref. [18] 
0.0721 

 

Table 3. Comparing the accuracy of proposed estimators and estimator 
presented in [18] in multi-level stair-shaped time delay estimation 

 

Delay Estimator Mean of Squares of Estimation Error (MSE) 

Proposed Method 1 

(P.M.1) 
0.4009 

Proposed Method 2 

(P.M.2) 
0.0952 

The Method Presented 

in Ref. [18] 
0.1987 

V. CONCLUSIONS 

A time delay estimator, for a specific class of LLTI 

systems with varying and uncertain time delay, was 

presented in this study. It is obvious that in the process of 

designing indirect adaptive controllers, the plant 

parameter estimation mechanism is a fundamental 

element. In this paper, a novel method has been presented 

for designing a rather fast and accurate estimator. The 

main idea behind this method is based on the 

establishment of duality principle between controller and 

observer. In this study, the structure of the direct adaptive 

controller (MRAS) has been indirectly used for designing 

an estimator. Briefly, the main parts in an MRAS control 

system (including reference model, plant, adjustable 

controller and adaptation law) are organized the way that 

designing the controller leads to designing the delay 

estimator in dual problem.  

In fact, adaptation law in designing the controller 

expresses the same estimator mechanism in dual problem. 

It should be noted that, for designing estimator 

mechanism (adaptation law), two methods were used, one 

based on Lyapunov theory and the other based on MIT 

rule. Simulations were made on a sample system (WSN), 

for different types of time delay signal. By using the 

proposed observers, the plant time delay was estimated 

with an acceptable speed and accuracy in online mode.  

At the same time, simulation results are expressive of 

the fact that the estimator based on Lyapunov stability 

theory is rather faster and more accurate, comparing to 

other methods. Also, for delays with rather larger 

uncertainty bound, the performance of the second 

proposed estimator (based on Lyapunov stability theory) 

is reported to be more desirable, comparing to other 

estimators. Eventually, it should be noted that for 

improving the performance of the proposed estimator, 

higher order Pade approximations, rather than time delay 

factor, could be used in the process of estimator 

designing, which will definitely increase the accuracy. 
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