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Abstract- The present paper is devoted to the study of an 

orthotropic cylindrical shell stiffened with cross system 

of ribs and contacting with hollow filler and flowing fluid 

in the channel of the filler. In the paper, a rigid contact 

between the shell and filler is considered. When solving 

the problem, the Hamilton-Ostrogradsky variational-

principle is used. The motion of the filler is described by 

the system of elasticity theory equations in 

displacements. Using the contact conditions between the 

shell and filler, between the filler and fluid, a frequency 

equation for finding natural frequencies of the vibrations 

of the system under consideration, is found. The 

frequency equation is implemented numerically. In 

calculations the properties of the Bessel functions are 

used. The curves of dependence of natural frequencies of 

vibrations of the system on the radius of the channel of 

the filler and on the fluid density, are constructed.    
 

Keywords: Orthotropic Shell, Fluid, Solid Medium, 

Frequency Equation, Stiffened Shell. 
 

1. INTRODUCTION 

      Structural materials are widely used in different fields 
of machine-building, aircraft building, shipbuilding, etc. 
This reduces to necessity of complete account of 
peculiarities of materials and constructions or rational 
construction and reliable strength analysis. For more 
complete description of the load-bearing capacity of the 

construction, it is appropriate to take into account the 
external force effects as viewed from medium. One of 
such effects is its contact with a filler and fluid. Note that 
the solutions described in references predominantly relate 
to the stiffened, isotropic medium less isotropic 
cylindrical shells [1].  

Vibrations of smooth cylindrical shells with medium 
were completely studied in [2, 3]. Behavior of 
deformable smooth shells with flowing fluid was 
considered in the monographs [4, 5]. Vibrations of 
laterally stiffened cylindrical shells with flowing fluid in 
medium, were studied in [6].  

Natural vibrations of an isotropic cylindrical shell 
with flowing ideal fluid and stiffened with cross system 
of ribs were considered in [7]. Ref. [8] deals with forced 
axially-symmetric vibrations of a fluid-filled cylindrical 
shell stiffened and loaded with axial compressive force.  

As it follows from this review, there are almost no 
works devoted to free vibrations of anisotropic ridge 
shells with a filler having a fluid-filled central channel. 
Therefore, investigation of one of principle dynamical 

characteristics of the elastic system, the frequency of 
edge anisotropic cylindrical shells with a filler having a 
fluid-filled channel is of great practical interest. 
 

2. PROBLEM STATEMENT 
We consider free vibrations of orthotropic edge shells 

with a filler having a central channel filled with ideal 
moving fluid. Study of the problem of natural vibrations 
of a cylindrical shell with a filler and flowing fluid and 
stiffened with cross system of ribs is reduced to joint 
integration of the equations of theory of shells, medium 
and fluid subject to indicated conditions on their contact 

surface. Equations of motion of a ridge shell has form: 
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where, 
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where, 0 , c , s  are densities of shell and rib materials, 

respectively), 
( ) ( )1 1c
c c

h

r
 = , 

( ) ( )
( )11 21c

c c

E

E
  = − , E ,  

are modulus of elasticity and the Poisson ratio of the shell 

material, R  is a median surface radius of the shell, sE ,

cE  are elasticity modulus of the rib material, 

2

2
,

12

h
a

R
=

2 2

2 2 

 
 = +

 
,

( )2 2 ,s
s s

h

R
 =

( ) ( )
( )

2

1 2
123

1
2

c yc c

c

E J h F

R hE
 



+
= − ,

( ) ( )2
122

1 2
1

1
,

s xs

s

E J

EL R h




−
=   

( ) ( ) ( ) ( ) ( )
2 2
122 2 2 2

2

1
, ,

s s
s s ss

E h

E R


   

−  
= =  

 
1L  is the 

length of the shell, xsJ  is inertia moment of the cross-
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are area and inertia moment of the cross-section of the rib 
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the displacement parameters of the median surface of the 
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, , , ,x z zzq q q q  is a 

pressure as viewed from medium and fluid on the shell, 

respectively. Here the indices “c” belongs to longitudinal, 

the index “s” to the lateral ribs. 

The equation of motion of the medium is of the form 

[2, 3]: 
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where, , ,x rs s s are the components of displacement 

vector of medium; s  and s  are Lame elasticity 

modulus, and   is fluid density. 

 Volume expansion  and rotation components 

, ,x r    are determined from the expressions: 
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The stress tensor components , ,rx r rr    are 

determined as follows [2]: 
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  (3) 

It is assumed that the main part of flow equals U  and 

deviations from this velocity are small, we use the wave 

equation for the potential of perturbed velocities   with 

respect to [4]: 
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The equation of motion of the shell (1) of medium (2) 

and fluid (4) are complemented with contact conditions.  

Suppose that the contact between the shell and medium is 

rigid, i.e. for r R=  the equality of displacements 
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the equality of pressures 
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On the contact surface a medium-fluid we observe 

continuity of radial velocities and pressures. The 

permeability or smoothness conditions at the medium 

wall have the form [4]: 
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Equality of radial pressures as viewed from fluid on 

medium 

0, 0, ( )rx r rr p r a  = = = − =  (8) 

where,  𝑎 is a radius of the medium channel.  

To contact conditions (5)-(8) we add boundary 

conditions. It is supposed that the shell is highly 

supported by the edges, i.e. for 0 =
 

and 

1 1 1( / )L R  = =   it is fulfilled 

1 10, 0w T M = = = =
 

(9) 

and for the medium 

0; 0xx rs s = = =
 

(10)
                              

 

Supplementing with contact conditions (5)-(8) the 

equations of motion of the shell (1), of medium (2) and 

fluid (4), we get a problem of natural vibrations of a 

cylindrical shell with elastic medium and flowing flow 

and stiffened with cross system of ribs. In other words, 

the problem of natural vibrations of the shell with elastic 
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medium and with flowing fluid and stiffened with cross 

system of ribs is reduced to joint integration of the 

equations of theory of shells, medium and fluid subject to 

conditions on their contact surface. 

 

3. PROBLEM SOLUTION 

We look for the potential of perturbed velocities   in 

the form: 

( )1 1 1, , , ( )cos sin sinr t f r n t     =  (10)           

Using (10), from conditions (7), (8), we have: 
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We will look for the perturbations of the shell in the 

form:  
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where, 0 0 0, ,u w are unknown constants; ,n  are wave 

numbers in longitudinal and peripheral directions, 

respectively.    

      Then in (1) as zzq  we should take the quantity 

zzq p= − , where p is a pressure according to (11). 

Allowing in (13) we can represent pressure p   in form: 
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We will look for the solution of the equations of the 

motion of elastic filler (2) in two variants: а) assuming 

that medium inertia influence on the vibration process is 

negligible; b) assuming that influence of medium motion 

inertia on the vibrations process is significant and it 

cannot be neglected. 

For displacements of the filler we have [2]:             
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where, k, n, ,e t    are wave numbers corresponding to 

compression and shear wave, and we have the 

dependences 2 2 2 2 2 2,  .e e t tk k   = − = −  

Using (15), (13), (3) and contact conditions (5), (6), 

we get a system of algebraic equations with respect to the 

constants 0 0 0, , ,u w , , , , , .s s s s s sA B C A B C  This system 

has a bulky form, and we do not give it here. By means of 
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where,  is a principle determinant, 
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i  are auxiliary 

determinants of the mentioned system.  

Substituting (17) in expression (3), for the stresses we 

get:     
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



where,

 

( ) ( ) ( ) ( )( )

( ) ( )

2
11

2
12 13

5 4

2 ;

n n s n

n n

q I I I

q I q n I

      

   

 = + + −

= − = −
                                              

( ) ( ) ( ) ( )( ) 2
14 5 4n n s nq K K K       = + + −

 

( )2
15 162 ( );n nq K q n K   = − = −  

( ) ( ) ( )( )

( ) ( ) ( ) ( )

2
11 12

2 2 2
13 14

; 2

;

n n n

n n n n

p n I p n I I

p I I n I p n K

    

      

= − = −

 = − + = −
 

( ) ( )( )15 2 n np n K K  = −

( ) ( ) ( )2 2
16 n n np K K n K     = − +  

( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

2
11

2
13 12

2
14

2
15 16

2 1 2 2

2 ; 2

2 1 2 2

2 ; 2

s n n

n n n

s n n

n n n

r I I

r n I I r I

r K K

r K r n I I

    

    

    

    

= − +

 = − = −

= − +

 = − = −
 

Using (18) and contact conditions (6), we can 

determine contact stresses , ,x rq q q . We represent them 

in the form 

( )1 2 3 1 1cos cos sinx x x xq C A C B C C n t  = + +  

( )1 2 3 1 1cos cos sinq C A C B C C n t      = + +
 

(19) 

( )1 2 3 1 1cos cos sinr r r rq C A C B C C n t  = + +  

Substituting (13) and (19) in (1), we get a system of 

homogeneous algebraic equations with respect to the 

constants 0 0 0, , .u w
 Nontrivial solution of this system is 

possible only in the case when 1  is the root of its 

determinant. As a result, we get the frequency equation  
det 0,   , 1, 2,3ij i j = =  (20) 

In the case b) the obtained frequency equation for 

finding the parameter of the vibration frequency, formally 

coincides with Equation (20) and as Equation (20) is 

transcendental with respect to 1 , since the sought for 

parameter of vibration frequency enters into the argument 

of the Bessel function. 

   

4. NUMERICAL RESULTS     

Let us consider some results of calculations 

performed proceeding from the above dependences. For 

geometrical and physical parameters characterizing the 

system, the followings were adopted: 
96.67 10c sE E= =  N/m2, 4

0
240.26 Ns1 /m0  c s  = = =   

3.4cF = mm2, 5.1ycJ = mm4, 1.39ch = mm, 160R = mm  

0.45h = mm, 1.95 mm,sh = 419.9  mmхhI =

4
. 0.48  mm ,kp sI =  31000 kg/m =

2.25 ,  308 m/secl t ta a a= =  

 

 

Figure 1. Dependence of the frequency of natural vibrations of the 

system on solid medium channel 

 

 
 

Figure 2. Dependence of the frequency of natural vibrations of the 

system on fluid density 
 

The results of calculations were represented in Figure 

1 and Figure 2. In Figures 1 and 2 the dotted lines 

correspond to the case b), entire curves to the case a).  In 

Figure 1 dependence of 1  on the radius of medium 

channel, in Figure 2 dependence of 1  
on fluid density 

for different ratios of the elasticity modulus of the shell 

material, was given.  

Calculation shows that with increasing the radius of 

the medium channel the frequencies of the studied system 
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increase
 

while with increasing fluid density, the 

frequencies of the studied system decrease. It can be seen 

from the figures that accounting of inertial properties of 

the medium reduces to decrease of the value of natural 

frequency of the studied construction. Furthermore, with 

increasing the ratio 1 2/E E  the frequencies of natural 

vibrations of the system increase. 
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