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Abstract- In many cases, the use of thick-walled 

cylinders in oil and gas transportation makes necessary to 

use more exact methods in their calculation. In the 

present paper based just on this direction, in the 

calculation of a cylinder we use a system consisting of 

the equations of three-dimensional elasticity theory. In 

solving the problem, the Hamilton-Ostrogradsky 

principle was used. 
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1. INTRODUCTION                                                                         

 In calculating stiffened, cylindrical form structural 

elements the two-dimensional model is preferable. In [1], 

free vibrations of an orthotropic shell-solid medium fluid 

system stiffened with rings, were studied. Free vibrations 

of a viscous fluid and soil-contacting orthotropic 

cylindrical shell stiffened with rings were researched in 

[2]. Ref. [3] deals with vibrations of an orthotropic, 

moving fluid-contacting viscous-elastic cylindrical shell 

stiffened with cross ribs.  

Ref. [4] was devoted to vibrations of an orthotropic, 

moving fluid-contacting viscous-elastic cylindrical shell 

stiffened with rods. The vibrations of an anisotropic 

cylindrical shell stiffened with cross system of ribs were 

considered in [5]. 

 The conducted analysis shows that the problem of 

vibrations of a moving fluid-contacting, three-

dimensional cylinder has not been studied enough. 

 

2. PROBLEM STATEMENT 

In this paper, vibrations of a flowing fluid-contacting 

three-dimensional cylinder stiffened with rods, were 

studied. In solving the problem, the Ostrogradsky-

Hamilton variational principle was used.  

To apply the mentioned method, the total energy of 

the system consisting of a three-dimensional cylinder, 

fluid and rods (Figure 1) is written. To write the total 

energy of a three-dimensional cylinder, we use a three-

dimensional functional: 
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where, 11 12 13 22 23 33, , , , ,     
 
are deformations of the 

cylinder’s points, , ,x rs s s   are displacements of the 

cylinder’s points, 11 22 12 13 22, , , , ,     23 33,   are 

stresses of the cylinder’s points, , ,x r   are longitudinal, 

radial, annular coordinates, s  is density of the 

cylinder’s material. 

The deformations and stresses in expression (1) are 

expressed in cylindric coordinates by means of 

displacements of cylindrical points: 
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The expressions for the potential energy of elastic 

deformation of ith longitudinal ribs are as follows [18]: 
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The kinetic energies of ribs are written in form [8]: 
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In expressions (2) and (3) , ,i i iu w  are the 

displacements of rod’s points used in stiffening, iF  are 

the areas of cross-sections of the ith rod stiffened to the 

shell in the direction of the generatrix, iE
 
is the modulus 

of elasticity at tension of the ith rod stiffened to the 

cylindrical shell in the direction of generatrix, ,yi ziJ J  are 

inertia moments of the ith rod with respect to the axis 

passing through the gravity center of the cross-section, 

kpiJ  are inertia moments at torsion of the ith rod, t  is 

time, i  is density of the material of the ith rods, 

( ),  ( )i крix x   are turning and twisting angles of the 

rod’s cross section. 
 

 
 

Figure 1. Three-dimensional cylinder stiffened with rods 

 

Potential energy of external surface loads acting as 

viewed from ideal fluid and applied to the shell is 

determined as a work performed by these loads when 

taking the system from the deformed state to the initial 

undeformed state and is represented as follows: 
2
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The total energy of the system equals the sum of the 

energy of elastic deformation of the shell and all 

longitudinal ribs and also potential energies of external 

loads acting as viewed from ideal fluid: 
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where, 1k  is the amount of longitudinal ribs. 

Assuming that the main flow rate equals U  and 

deviations from this rate are small, we use a wave 

equation for the potential of perturbed rates   with 

respect to [7]: 
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where, 0a   is velocity of sound propagation in fluid.  

The equation of motion of the cylinder takes form [8]: 
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are Lame 

coefficients for the cylinder material, s  is density of the 

cylinder material.  

The solution of the motion of a three-dimensional 

cylinder has the form [8]: 
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The expression of the total energy of the system (5), 

the equation of motion of fluid (6) and cylinder (7) are 

complemented with contact conditions. On the contact 

surface a cylinder-fluid, we observe continuity of radial 

velocities and pressures. The impermeability and smooth 

flow condition at the cylinder’s wall have the form [8]: 
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Equality of external surface loads of radial pressure 

acting as viewed from fluid on the shell wall: 
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where, the pressure p  through the potential   is 

determined by the formula ( m  
is fluid’s density) [9]: 
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It is assumed that the rigid contact conditions between 

the shell and rods were satisfied: 
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The frequency equation of the ridge inhomogeneous 

shell with flowing fluid is obtained based on 

Ostrogradsky-Hamilton principle of stationarity of action: 

0W =
 

(15) 

where 
t

t
W Jdt
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is Hamilton’s action, t   and t   are 

the given arbitrary moments of time. 

Complementing with contact conditions the total 

energy of the system (5), the equation of motion of fluid 

(6) and cylinder we arrive at a problem of natural 

vibrations of a flowing fluid three-dimensional cylinder 

stiffened with longitudinal ribs. In other words, the 

problem of natural vibrations of a flowing-fluid three-

dimensional cylinder stiffened with longitudinal ribs is 

reduced to joint integration of expressions for total 

energy of the system (5),  equation of motion of fluid (6) 

subject to conditions (10)-(14) on their contact surface. 

 

3. PROBLEM SOLUTION 

We look for the potential of perturbed velocities   in 

the form: 
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To determine the unknown function ( )f r , we 

substitute the solution (16) in (6).  

As a result, we get a Bessel equation whose solutions 

a Bessel functions. Depending on the parameter 
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Then expressions (12) and (17) will be rewritten in 

the form 
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where, .n n r R   ==   

If we calculate the integrals contained in expression 

(5), and use conditions (14), we get a two-dimensional 

polynomial with respect the constants , ,s s sA B C : 
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If we vary Π the expression by constants , ,Cs s sA B

and equate the coefficients of independent variations to 

zero, we obtain the following system of homogeneous 

algebraic equations 
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Since system (20) is a homogeneous system of linear 

algebraic equations, a necessary and sufficient condition 

for the existence of its nonzero solution is the equality of 

its principal determinant to zero. As a result, we obtain 

the following frequency equation 
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4. NUMERICAL RESULTS 

Equation (22) was calculated numerically. The para-

meters contained in the solution of the problem were 

adopted: 
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23. mm4iF =  

5.1yiJ = mm4 

1.39ih = mm  

The results of calculations were given in Figure 2 in 

the form of dependence of frequency parameter on the 

rate of fluid flow, in Figure 3 on the thickness of cylinder, 

in Figure 4 on the amount of rods.  

As can be seen from Figure 2, with increasing the 

fluid rate, the value of the frequency parameter at first 

weakly decreases, and then after certain value a sharp 

decrease is observed. As the thickness h b a= −  of the 

cylinder increases, the value of the frequency parameter 

at first increases, and then after certain value decreases.  

This is explained by the fact that at the initial 

increases in the cylinder’s thickness, its rigidity increases 

and this increases natural vibration frequency of the 

system. Increase in the cylinder’s thickness causes 

increase in its mass and this in its turn the increase of 

natural vibration frequency of the system. This result was 

given graphically in Figure 3.  

As can be seen from Figure 4 the first increase in the 

amount of rods causes increase of natural vibration 

frequency of the system, the subsegment increase causes 

decrease in natural vibration frequency of the system. 

 

 

 
Figure 2. Dependence of frequency on flow rate of fluid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

    Figure 3. Dependence of frequency parameter of cylinder’s thickness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Dependence of frequency parameter on the amount of rods 
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