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 Abstract- In this paper we study one of dynamical 

strength characteristics, the frequency of natural variations 

of a fluid-filled cylindrical shell made of a fiber-glass and 

strengthened with annular ribs heterogeneous in thickness 

and along the generatrix under the Navier boundary 

conditions. Using Hamilton-Ostrogradsky’s variational 

principle, the frequency equations for calculating natural 

vibrations of the system under consideration, are 

constructed. In the calculation process, the linear laws for 

heterogeneity function were accepted. Frequency 

equations were constructed and numerically implemented. 

The results of calculations of natural frequency of 

vibrations were represented in the form of dependence on 

homogeneity parameter, on the number of lateral ribs for 

different values of wave formation parameters. 

Characteristic curves of dependence were constructed.    

 

Keywords: Strengthened Shell, Variational Principle, 

Fluid, Free Vibration, Heterogeneity. 

 

1. INTRODCTION 

Polymeric, carbon, metal and organic-based 

composites and porous aluminum are widely used in 

different fields of engineering. To create heterogeneity in 

the bearing structures, by the diffusion method or using 

other technologies, another material with higher strength 

characteristics is introduced into its surface layers and as a 

result, there appears technological heterogeneity in the 

construction. There arises a need to develop methods for 

calculating such heterogeneous shells and study the 

influence of heterogeneity on the frequency of their natural 

vibrations. We need algorithms for determining the 

resonance frequencies leading to the destruction of 

heterogeneous shells. To give the greater rigidity, the thin-

walled part of the shell is strengthened by the ribs and this 

significantly increases its strength at slight increase in the 

mass of construction even if the ribs have a small height.      

Papers [1-2] were devoted to the study of parametric 

vibrations of a rectilinear bar nonlinear and heterogeneous 

in thickness in viscoelastic medium using the Pasternack’s 

contact model. The influence of the main factors such as 

elasticity of foundation, damageability of the material of 

the bar and shell, dependence of the shear coefficient on 

the frequency of vibrations on the characteristics of 

longitudinal vibrations of a bar in a viscoelastic medium 

was studied. In all the cases under consideration, the 

dependences of dynamical stability zone of bar vibrations 

in a viscoelastic medium on the construction parameters 

were constructed in the plane the load-frequency. 

In [3], free vibrations of a moving fluid-contacting, 

longitudinally strengthened, orthotropic cylindrical shell 

heterogeneous in thickness, were studied. Using the 

Hamilton-Ostrogradsky variational principle, the systems 

of equations of motion were constructed. Heterogeneity of 

the shell material in thickness was taken into account 

accepting that the Young modulus and shell material’s 

density are the functions of normal coordinate. Frequency 

equations were obtained and numerically implemented. 

During the calculation process, linear and parabolic laws 

were accepted for the heterogeneity function. 

Characteristically curves of dependence were constructed.  

In the presence of geometrical and physical 

nonlinearities of the shell, the equations describing its 

stress-strain state are complex linear partial differential 

equations and in the paper [4] the method of successive 

loadings was used for solving them.  Derivation of these 

equations was given in [5, 6]. An effective two-step 

method of sequential perturbation of parameters has been 

developed to reduce error in linearization of the equation 

and to reduce the time of counting [7]. Influence of support 

condition along the contour on the stability of the polymer 

concrete shells was studied in [8-10].   

 

2. PROBLEM STATEMENT 

For applying the Hamilton-Ostrogradsky variational 

principle we use total energy of the studied construction 

that consists of a cylindrical form heterogeneous shell and 

strengthening annular elements hose number varies. 

Furthermore, the studied construction contacts with solid 

medium (Figure 1(а)). To take into account the 

heterogeneity in thickness of a cylindrical shell, we will 

proceed from the three-dimensional functional. In this case 

the functional of total energy of cylindrical shell will be: 
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Figure 1. Strengthened heterogeneous cylindrical shell 

     

There exist various methods to account for the 

heterogeneity of the shell material. One of them is that the 

Young modulus and density of the shell material are 

accepted as the functions of normal, lateral and 

longitudinal coordinate  10 . It is assumed that the 

Poisson ratio is constant. In this case, the strain-stress 

dependences are of the form:                  
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where, 0 E  is elasticity modulus, 0  is density of the 

material of a homogeneous shell.           

Allowing for (5), the functional of total energy of the 

cylindrical shell has the form: 
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The expression for the potential energy of elastic 

deformation of the jth lateral rib is as follows: 
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Kinetic energies of the ribs are written in the form: 
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In expressions (7) and (8) , , ,j zj yj kpjF J J J
 
are area and 

inertia moments of the cross section of the jth lateral bar, 

respectively, with respect to the axis Oz  and the axis 

parallel to the axis Oy  and passing through the gravity 

center of the section and also its torsional inertia moment; 

,j jE G  are elasticity and shear modules and also of the jth 

lateral bar, respectively,
 

j  is density of materials from 

which the jth lateral bar was made. 

Potential energy of external surface loads acting on the 

part of the fluid on the shell, is determined as a work 

performed by these loads when transferring the system 

from the deformed state to the initial underformed state 

and is represented in the form: 
2
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The total energy of the system equals the sum of energy 

of elastic deformations of the shell and all lateral ribs and 

also potential energy of external loads acting on the part of 

the fluid: 
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where, 2k  is the amount of lateral ribs. 

The surface load ,rq
 
acting on the part of the fluid on 

a longitudinally strengthened shell, is determined from the 

solution of the equation of motion of ideal fluid  11 : 
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where,   is a potential of perturbed velocities, 0a  is 

perturbation propagation velocity in fluid.  

On contact surface a shell-fluid we observe continuity 

of radial velocities and pressures. Condition of 

impermeability or smoothness of flow at the shell wall is: 
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Equality of radial pressures on the part of fluid on the shell: 

r r Rq p == −  (13) 

By means of (11), (12) and (13) we can represent 

pressure p
 
on the part of fluid on the shell in the form: 
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In (15)   
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where, nK  is a second kind nth order modified Bessel 

function, nN  are second kind Bessel or Neumann 

functions of nth order.  

It is assumed that the conditions of hard contact 

between the shell and bars were satisfied: 
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It is considered that on the lines 0x =  and x l=  the 

Navier boundary conditions are fulfilled: 

11 110,  0,    0,  0w N M = = = =  (16) 

where,  l  is the shell length, 11T , 11 M  are forces and 

moments acting on cross sections of the cylindrical shell 

(Figure 1(b)). 

The frequency equation of an ribbed heterogeneous 

shell with flowing fluid was obtained based on the 

Ostrogradsky-Hamilton principle of stationarity of action: 

0W =  (17) 
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t

t

W Jdt





= 
 

is Hamilton’s action, t   and t   are the 

given arbitrary moments of time. 

Completing the total energy of the system (10), the 

equation of motion of fluid (11) by contact conditions (12) 

and (13) we get a problem of natural vibrations of a fluid-

contacting heterogeneous cylindrical shell strengthened 

with annular ribs in the main coordinate directions. In 

other words, a problem of natural vibrations of a fluid-

filled heterogeneous cylindrical shell strengthened with 

annular ribs in the main coordinate directions is reduced to 

joint integration of the expression for total energy of the 

system (10), equation of motion of fluid (11) subject to 

condition (12) and (13) on their contact surface and 

boundary conditions.  

 

3. PROBLEM SOLUTION 

In expression (10) , ,u w  are varying variables. We 

approximate these unknown variables as follows:  
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where, 0 0 0, ,u w
 
are unknown constants; ,n  are wave 

numbers in longitudinal and peripheral directions, 

respectively, /x R = , 
m R
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l


 = = , 1 0 ,t t=    is 

the desired frequency.  

To calculate the work (9), by means of (14) we find 

contact surface forces . rq  When simplifying (10) we 

adopt the following dependences:  
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where  , ,    are constant parameters of heterogeneity in 

the direction along the normal, along the generatrix of the 

shell and in the peripheral direction, respectively, and  

 , , 0,1    . 

Substituting the solution (19) in (10), taking into 

account expression (18) 
 
for the total energy (10), we get a 

second order polynomial with respect to the constants 
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Since the expression for the coefficients 

11 22 33 44 55 66, , , , ,       have a bulky form, we do not 

cite them. If we vary the expression of   with respect to 

the constants 0 0 0, ,u w  and equate the coefficients of 

independent variations to zero, we get the following 

system of homogeneous algebraic equations 
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As the system (20) is a homogeneous system of linear 

algebraic equations, equality of its principal determinant to 

zero is the necessary and sufficient condition of the 

existence of its nonzero solution. As a result, we get the 

following frequency equation 
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We write Equation (21) in the form: 
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Equation (22) was solved by numerical method. The 

following parameters were used in solution of problem: 
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4. CONCLUSIONS 

The results of calculations were given in Figure 2 in the 

form of dependence of the frequency parameter on the 

amount of the strengthening bars 2k  on the shell surface, 

in Figure 3 in the form of dependence of frequency 

parameters on the heterogeneity parameter in the direction 

of shell generatrix .   As we see from Figure 2, with 

increasing the amount of lateral ribs, the value of the 

frequency parameter increases   

 

 
 

Figure 2. Dependence of the frequency parameter on k2 

 

 
Figure 3. Dependence of the frequency parameters on  
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