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Abstract- Cylindrical panels are widely used in modern 

technology, power engineering, and in various fields of 

construction and engineering. In many cases, depending 

on production technology and a number of various 

reasons, mechanical properties of the material of 

cylindrical panels become continuously inhomogeneous 

along the length of the panel. In operational conditions 

these panels are in contact with different nature medium 

and they are stiffened when it is necessary. 
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     1. INTRODUCTION 

 In paper [1], a problem of lateral vibrations of an 

annular cross-section inhomogeneous cylindrical shell 

lying on a viscous-elastic foundation, is considered. It is 

assumed that the modulus of elasticity and density are 

continuous functions of thickness coordinate. In the paper 

a problem of natural vibrations of an annular cross-

section cylindrical shell inhomogeneous only along the 

length and lying on inhomogeneous viscous-elastic 

medium, is considered. The solution of the problem is 

reduced to the system of two linear differential equations 

with respect to the stress function and deflection.  

The method of separation of variables and the 

Bubnov-Qalerkin method is used when solving the 

problem. The paper [5] was devoted to free vibrations of 

a flowing fluid-contacting, isotropic, inhomogeneous 

cylindrical shell stiffened with cross system of ribs. 

Using the Hamilton-Ostrogradsky variational principle, 

the system of equations of motion for a flowing fluid-

contacting anisotropic cylindrical shell inhomogeneous in 

thickness and stiffened with cross systems of a ribs was 

solved. The paper [4] deals with natural vibrations of a 

soil-contacting cylindrical shell stiffened with annular 

ribs and subjected to compressive forces. 

The present paper is devoted to vibrations of an 

orthotropic, cylindrical panel inhomogeneous in 

thickness, stiffened with lateral ribs and lying on a 

linearly viscous-elastic foundation. Using the Hamilton-

Ostrogradsky variational principle for finding vibrational 

frequencies of a cylindrical panel inhomogeneous in 

thickness, stiffened with lateral ribs and lying on a linear 

elastic foundation, the frequency equation was 

constructed, its roots were found and the influences of 

physical and geometrical parameters characterizing the 

system, were studied. 

 

2. PROBLEM STATEMENT 

      To apply the Hamilton-Ostrogradsky variational 

principle, we write the total energy of the structure under 

investigation, consisting of an orthotropic cylindrical 

panel inhomogeneous in thickness and stiffening 

elements whose number varies.    

Furthermore, from the inside the construction is in 

contact with the medium (Figure 1). To take into account 

inhomogeneity of a cylindrical shell in thickness, we will 

proceed from three-dimensional functional. In this case, 

the functional of total energy of the cylindrical shell is of 

the form 
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There are various ways for taking into account 

inhomogeneity of the shell material. One of them is that 

the Young modulus and density of the material are 

accepted as functions of the normal coordinate z [11]. It is 

supposed that the Poisson ratio is constant. In this case, 

the strain-stress ratio is of the form 
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In (1) we can write: 
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Figure  1. Inhomogeneous orthotropic, elastic medium-contacting 

cylindrical panel stiffened with annular ribs 
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 are the main module of elasticity of the orthotropic 

material, 

.

( )

h

h

z dz 
−

=  , 1 2,     are Poisson ratios of the 

orthotropic material, h  is shell thickens,
 

, ,u w   are the 

components of displacements of the points of the median 

surface of the shell. It is assumed that 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2, , .E z E f z E z E f z G z Gf z= = =  

The expressions for the potential energy of elastic 

deformation of jth lateral rib are as follows [12]: 
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The kinetic energy of ribs are written in the form [12]: 
0
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In expressions (4) and (6) , , ,j zj yj kpjF J J J
 

are the 

area and moments of inertia of the cross-section of the jth 

bar with respect to the axis Oz  and the axis parallel to 

the axis Oy and passing through the gravity center, and  

also its inertia moment at  torsion; ,j jE G  are elasticity 

and shear modulus of the material of the jth lateral bar,   

respectively; j  is density of materials from which the 

jth lateral bars were made. 

Potential energy of external surface loads acting as 

viewed from elastic medium, applied to the shell is 

determined as a work performed by these loads when 

taking the system from the deformed state to the initial 

not deformed one and is represented as follows:
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Suppose that the plate lies on two Pasternak-type two-

constant foundation [7], where reaction zq  is connected 

with flexure w  in the following relation: 
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where, vk , pk  are Winkler’s and Pasternak coefficients. 

The total energy of the system equals the sum of 

energies of elastic deformations of the shell and lateral 

ribs, and also potential energies of all external loads 

acting as viewed from viscous-elastic medium: 
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To describe the strain state of ribs, in addition to three 

components of displacements of gravity center of their 

cross-sections ( , ,j j ju w   of the jth lateral bar , ,i i iu w  

of the ith longitudinal bar) it is also necessary to 

determine the twist angles kpi   and kpj . 

Taking into account that according to the accepted 

assumptions we have constancy of radial flexures and 

also equality of corresponding twist angles following 

from the conditions of rigid connection of ribs with a 

shell, we write the following relations: 
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where, 
1 10.5 , 0.5i i j jh h H h h H= + = + , h  is shell 

thickness, 1
iH  and 

1
jH are distances from the axes of the 

ith longitudinal and jth lateral bar to the shell surface, ix  

and iy  are the coordinates of lines of conjunction of ribs 

with the shell, ,i kpi   and ,j kpj   are turning and 

twisting angles of cross-section of longitudinal and lateral 

bars, respectively.  

This time, the turning angles of normal elements  

1 2,   with respect to coordinate lines y  and x are 

expressed by w  and   by means of the dependences 

1 2,
w w

x R R


 
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= − = − + 
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, where R  is the radius of 

curvature of the median surface of the plate. 

Let the plate be comprehensively fixed with hinges. 

Then the following boundary conditions should be 

fulfilled: 

0   for   0;xu w M x L= = = = =  (10) 

00   for   0;xu w M  = = = = =  (11) 

The frequency equation of a ridge, inhomogeneous, 

orthotropic, flowing-fluid contacting shell was obtained 

on the base of Ostrogradsky-Hamilton principle of 

stationarity of action: 

0W =                                           (12) 

where 

t

t
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=   is Hamilton action, t  and t   are the 

given arbitrary moments of time. 

Complementing the total energy of the system (9) 

with contact (10) and boundary conditions (11), we get a 

problem of natural vibrations of a viscous-elastic 

medium-contacting orthotropic cylindrical shell 

inhomogeneous in thickness and stiffened with lateral 

system of ribs.  

In other words, the problem of natural vibrations of a 

viscous-elastic medium-contacting orthotropic, 

cylindrical shell inhomogeneous in thickness and 

stiffened with cross system of ribs is reduced to 

integration of expressions for the total energy of the 

system (9). 

 

3. PROBLEM SOLUTION 

     In expression (9) , , ru w are variable values. These 

unknown values are approximated in the following way: 
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    Substituting (13) in (9), after integration we get a 

function of variables 0 0 0, ,u w . The stationary value of 

the obtained function is determined by the following 

system: 
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The non-trivial solution of the system of third order 

linear algebraic equations is possible only in the case 

when   is the root of its determinant. The determination 

of   is reduced to a transcendental equation as   enters 

into the arguments of the Bessel function: 

det 0, , 1,3ija i j= =  (15) 

 

4. CONCLUSIONS 

Equation (15) was calculated by the numerical 

method. The parameters contained in the solution of the 

problem were accepted as: 
3
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6 3 410  N/m ; 10  N/mpk k = =
 

The result of calculations were given in Figure 2 in 

the form of dependence of the frequency   on the 

amount of stiffening bars 2k on the shell surface, in 

Figure 3 in the form of dependence of frequency   on in 

homogeneity parameter  .  

It can be seen from Figure 2 that with increasing the 

amount of lateral ribs, the value of the vibrations 

frequency of the system increases. Figure 3 shows that 

with increasing the in- homogeneity parameter the 

vibrations frequencies of the system also increase. 
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Figure 2. Dependence of vibrations frequency     of the 

system on the amount of ribs k2  
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 Figure  3. Dependence of vibrations frequency               

of the system on the inhomogeneity parameter    
   

   


