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Abstract- The supports formed by the combination of 

cylindrical panels are used in bridge construction. To 

save the material, the interior area of the support is filled 

with soil. Such supports are exposed to different nature 

forces. One of such forces is a force generated on the 

surface of cylindrical panels that form supports during 

flood flow. Under the action of these forces the support is 

exposed to forced vibration. Therefore, to study the 

supports formed from combination of cylindrical panels 

with regard to viscosity and heterogeneity of soil, 

orthotropic character of panels is of great practical 

importance. In the paper, based on the Hamilton-

Ostrogradsky variational principle, we study forced 

vibrations of a vertical retaining wall consisting of three 

orthotropic cylindric panels contacting with viscous-

elastic, heterogeneous soil, obtain analytic expressions to 

calculate the displacements of the points of cylindrical 

panels and structure characteristically curves. Account of 

heterogeneity of soil is performed by accepting its 

rigidity coefficients as a function of coordinate. It is 

assumed that the Poisson ratio is constant.   
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1. INTRODUCTION                                                                         

Ref [1] was devoted to the study of one dynamical 

strength characteristics, the frequency of natural 

vibrations of a vertical support consisting of three 

orthotropic soil-filled cylindrical panels reinforced with 

discretely distributed longitudinal rods. Using the 

Hamilton-Ostrogradsky principle for finding the 

frequencies of vibrations of a vertical support, a 

frequency equation is structured, its roots are found, 

influence of physical and geometrical parameters 

characterizing the system, are studied. Account of joint 

work on the contact line of three cylindrical panels is 

accepted as contact conditions. Ref. [2] was devoted to 

one of dynamical strength characteristics, the frequency 

of natural vibrations of the retaining wall consisting of 

two soil-contacting, orthotropic cylindrical shells 

reinforced with discretely distributed annular rods.   

A problem of natural vibrations of a retaining wall 

consisting of two orthotropic, viscous-elastic soil-filled 

cylindrical shells reinforced with discretely distributed 

longitudinal rods was solved in [3]. The problems of 

connection of concave shells with contour constructions 

were solved in Kh.R. Seyfullayev’s papers [4, 5]. 

Retaining walls consisting of three different isotropic 

materials in a plane strain state were analyzed in [6]. The 

problem was reduced to the solution of ordinary 

differential equations and analytic solution was obtained.  

Ref. [7] was devoted to development of a technique 

for calculating cylindrical shells made of isotropic 

material with regard to compression and sliding in a 

contact surface. Calculations and studies were carried out 

based on moment theory of cylindrical shells. Analysis of 

the executed works shows that during the construction of 

retaining walls, stiffened cylindrical shells were not used 

and the soil reaction was not taken into account.  

Paper [8] was devoted to vibrations of an orthotropic, 

cylindrical panel inhomogeneous in thickness, stiffened 

with lateral ribs and lying on a linearly viscous-elastic 

foundation. Using the Hamilton-Ostrogradsky variational 

principle for finding vibrational frequencies of a 

cylindrical panel inhomogeneous in thickness, stiffened 

with lateral ribs and lying on a linear elastic foundation, 

the frequency equation was constructed, its roots were 

found and the influences of physical and geometrical 

parameters characterizing the system, were studied.   
 

2. PROBLEM STATEMENT 

Assume that on the surface of each of three 

orthotropic panels contacting with viscous-elastic 

medium and composing vertical retaining wall is exposed 

to the following external forces in direction of normal:  

0 1 1sin cos sini i i iP P n t  =   (1) 

where, 1 01,  ,  ,i
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  = =  are wave numbers of the 
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For studying forced vibrations of a viscous-elastic 

medium-contacting retaining wall consisting of three 

orthotropic panels we will use the Hamilton-

Ostrogradsky variation principle. According to this 

principle, the total energy of the structure under 

consideration gets a stationary value for real stress-strain 

state. Since the structure studied consists of cylindrical 

shells, viscous-elastic soil, we will write the expressions 

of potential and kinetic energies of each element. 

       The potential energies of cylindrical shells: 
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The kinetic energies of cylindrical shells: 
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The influence of soil on cylindrical shells is replaced 

by the external forces 𝑞𝑥𝑖, 𝑞𝑦𝑖 , 𝑞𝑧𝑖. The work done in 

displacements of the points of these forces is determined 

by means of the following expression: 

( )
3 /4

0 0

a

i xi i yi i zi i iA q u q q w dxd


 = + +   (3)                                     

where, 1i =  corresponds to the first cylindrical panel 

forming the support, 2,i =  to the second cylindrical 

panel, 3i =  to the third cylindrical panel; , ,i i iu w  are 

displacements of the points of cylindrical panels, ,i iR h  

are curvature radii and thickness of cylindrical panels, 

11 22 12 66, , ,i i i ib b b b  are elasticity module of orthotropic 

cylindrical panels, 1 2,i iE E  are elasticity module of 

orthotropic cylindrical panels in the direction of the 

coordinate axes ix  and ,i  1 2,i i   are Poisson ratios, 

, ,xi yi ziq q q  are the components of forces acting as viewed 

from soil on cylindrical panels, is  are surfaces of 

cylindrical panels.  

The elasticity module of orthotropic cylindrical panels 

are expressed by the constants 11 22 12 66, , ,i i i ib b b b ,  

1 2,i iE E , 1 2,i i   in the following way:  
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The components  , ,xi yi ziq q q  of forces acting on 

cylindrical panels as viewed from soil are taken as 

follows: 
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where, ( ), ( )i sip x k x  are rigidity module of soils at 

compression and sliding and we will consider the cases 

when these quantities change by the linear law: 

( ) ( )0 0( ) 1 , ( ) 1i i i i si si i ip x p k x k   = + = +  (5) 

 where, , , [ 1;1]i i i    −  are heterogeneity parameters 

0 ,i siop k  are rigidity module of homogeneous soil in 

compression and sliding, ( ) tAet −=  is a relaxation 

core, ,A  are empiric constants. 

The work done by forces acting in normal direction of 

each three orthotropic cylindric panels forming an elastic-

plastic medium-contacting vertical retaining wall is 

determined by means of the following expression: 
1

0 0

i

i i i i iB R Pw d d


 = −    (6) 

As a result, the total energy of the system is as follows: 

( )
3

1
i i i i i

i

G K A B
=

 = + + +  (7) 

To expression (7) we add contact and boundary 

conditions. We assume that hard contact conditions 

between the shell and bars are satisfied: 
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It is assumed that the cylindrical shells were 

elastically connected with each other. That is, in the 

contact the conditions  
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are satisfied. It is accepted that cylindrical shells were 

highly supported on ideal diaphragms along the lines 

0x =  and x a=  in this case boundary conditions are 

expressed as follows: 

1 1

0,  0

0,  0

i iu w

T M

= =

= =
 (10) 

where, 11, MT  are force and moment acting on the cross-

section of the cylindric shell. 

Using the Ostrogradsky-Hamilton principle of 

stationarity of action one can obtain a frequency equation 

for determining natural vibrations frequency of retaining 

walls formed from connection of cylindrical shells: 

0=W   (11)                 

where, =

1
0

0

t

t

dtW  is Hamilton’s action. If in the equality 

0=W  we perform variation operation and take into 

account that the 111 ,, wu   variations are arbitrary, 

independent, we can get a system of equations for 

studying forced vibrations of retaining walls formed from 

connection of cylindrical shells dynamically contacting 

with soil.  

Thus, the solution of vibrations of retaining walls 

formed from the connection of soil contacting cylindrical 

shells is reduced to joint integration of total energy (7) of 

the construction within contact conditions (8) and (9), 

boundary conditions (10). 

 

3. PROBLEM SOLUTION 

We look for displacements of the points of the 

cylindrical panel in the following form: 

( ) 110 sinsincoscos tnnuu iiiii  +=  

( ) 110 sinsincossin tnn iiiii  +=   (12) 
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where, iii wu 000 ,  are unknown constants. Using contact 

conditions (9) and solutions (12), we can express the 

constants 020202 ,, wu   and 030303 ,, wu  by the constants

010101 ,, wu  . 
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If we write solutions (12) in (7) and carry out the 

integration operation, for the total energy of the ith panel 

we get the following expression: 
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As can be seen from expressions (14), the total energy 

of cylindrical shells composing retaining walls are two-

degree polynomials with respect to the constants 

.,, 010101 wu    

We show them in the following way: 
2 2 2
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Performing variation operations in the equality 

0=W  by using (15) and taking into account that the 

variations 010101 ,, wu   are arbitrary, independent, we 

get the following system of heterogenous linear equations 

with respect to the constants :,, 010101 wu   
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Since the system (16) is linear heterogeneous, we can 

find its solution by the Kramer rule 
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As a result, for the amplitudes of displacements we get: 
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Taking into account the fisrt three equalities of (13), 

we can write: 
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In the same way, taking into account the last three 

equalities of (13), we can write: 
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4. CONCLUSIONS 

The 𝑤01 component contained in (18) was calculated 

by a numerical method. For physical and mechanical 

parameters characterizing the panels and soil the 

following values were taken:  
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Figure 1. Dependence of the curve 
01w versus 1Re  

 
8 2 6 2

1 2 3 7 10  N/m ,  11 10  N/msip p p k= = =  =   

1 2 113,  0.35, 160 mm, 18.3 QPai i i
i

a
v v R b

R
= = = = =  

12 22 662.77QPa, 25.2 QPa, 3.5QPab b b= = =  

3, 1850kg/m , 0.45mm
2

i i ji i

a
h  = = = =  

02 03

01 01

0.8, 0.7, 0.05, 0.1615
P P

A
P P

= =  = =  

It can be seen from Figure 1 that, with an increase in 

the frequency of oscillations, the amplitude of 

displacements first increases, and then reaching a 

maximum decreases. The maximum values of 

displacements correspond to resonant frequencies. In 

Figure 1, the values of 0.25 and 0.35 are resonant 

frequencies. 
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