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Abstract- In the present paper we study natural 

vibrations of a cylindrical shell heterogeneous in 

thickness, stiffened with rings and dynamically 

contacting with flowing fluid. Using the Hamilton-

Ostrogradsky variational principle when solving the 

probem a system of equations is structured for studying 

natural vibrations of a cylindrical shell heterogeneous in 

thickness, stiffened with rings and dynamically 

contacting with flowing fluid. The heterogeneity of the 

cylindrical shell along the thickness was taken into 

account by accepting the Young modulus and material 

density as a function of coordinate changing along the 

thickness. When studying joint vibrations of a cylindrical 

shell heterogeneous along the thickness, stiffened with 

circular ribs and dynamically contacting with flowing 

fluid, two cases were considered: a) fluid is in stationary 

state; b) fluid moves at a constant speed. In both cases, a 

frequency equation was constructed and its roots were 

found. In the calculation process, linear and parabolic 

cases of change of the heterogeneous function with 

respect to the coordinate were considered.  

 

Keywords: Cylindrical Shell, Liquid, Free Vibrations, 

Vibration Frequency. 

 

1. INTRODUCTION                                                                         

       In connection with increase of velocity of motion, 

pressure, temperature and other factors, study of vibration 

processes occurring in machines and mechanisms used in 

modern engineering is of great importance. In the course 

of operation these constructions are in contact with 

various media. Therefore, vibration processes occurring 

in a construction or structural elements should be studied 

with regard to influence of external factors. In the paper 

we research natural vibrations of the system a shell 

stiffened with ribs in the direction of the heterogeneous 

generatrix along the thickness and fluid. The 

heterogeneity of the cylindrical shell along the thickness 

may be taken into account by two various methods. By 

introducing a multilayer [1] and heterogeneity function. 

In the paper, the heterogeneity was taken into account by 

accepting the Young modulus and material density as a 

function of a coordinate changing along the thickness. 

      Natural vibrations of an isotropic cylindrical shell 

stiffened with crossed ribs and fluid moving in infinite 

elastic medium were considered in [2]. Natural vibrations 

of an isotropic cylindrical shell stiffened only with rings 

and fluid moving in an elastic medium were researched in 

[3]. The papers [4-6] study parameter vibrations of 

smooth cylindrical shells with regard to heterogeneity 

along the thickness. Using the variational principle in the 

solution of the problem, for finding frequency of 

vibrations of the system under consideration, a frequency 

equation was constructed and researched depending on 

physical-geometrical parameters characterizing the 

system, the characteristic curves on the force-frequency 

plane were drawn. Stability of cylindrical shells exposed 

to the action of time-varying force was studied in [7].  
Free vibrations of an isotropic inhomogeneous, moving 

fluid-contacting cylindrical shell stiffened with cross 

system of ribs were studied in [8].  

In the paper [9] natural vibrations of flowing fluid 

interacting, cylindrical shell inhomogeneous in thickness, 

are studied. Using the Hamilton-Ostrogradsky variation 

principle in the solution of the problem, for studying free 

vibrations of a flowing-fluid-contacting cylindrical shell 

inhomogeneous in thickness and stiffened with rings, a 

system of equations was constructed. Homogeneity of the 

thickness of the cylindrical shell was taking into account 

accepting the Young modulus and density of the material 

as a function of coordinate alternating along thickness.   

When studying vibrations of a cylindrical shell 

inhomogeneous along the thickness and stiffened with 

annular ribs and dynamically interacting with flowing 

fluid, we considered two cases: a) fluid is at rest inside 

the cylindrical shell b) fluid moves with constant velocity 

inside the cylindrical shell. In both cases, the frequency 

equation was structured and its roots were found. In the 

calculation process, linear and parabolic cases of 

alternation of inhomogeneity function with respect to the 

coordinate were considered. 

 

2. PROBLEM STATEMENT 

       We will use a three-dimensional functional by taking 

into account the heterogeneity of a cylindrical shell along 

the thickness. In this case, the total energy of the 

cylindrical shell is in the following form:  
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There are various ways for taking into account 

heterogeneity. One of them is to accept the Young 

modulus and material's density as a function of a 

coordinate changing along the thickness [1]:
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Taking into account expressions (2)-(3) and the equality 
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We write the total energy of the system of rings:  
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Since the fluid is ideal, the conditions 0, 0x yq q= =    

are satisfied for the forces acting on the cylindrical shell. 

The work done by forces acting on a cylindrical shell in 

displacements of the points of the shell as viewed from 

fluid is: 
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The total energy of the system under consideration 

will consist of the sum 
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In expressions (1)-(6) , ,u w  are displacements of the 

points of the cylindrical shell, , ,j j ju w  are 
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,E v  are modulus 

of elasticity of the material of the cylindrical shell and the 

Poisson ratio, respectively, ,R h  are the radius and 

thickness of the cylindrical shell, respectively, jE  is 

elasticity modulus of the ring, jF  is the area of the cross 

section of the ring;  ., ,zj xj kp jI I I   are inertia moments of 

the cross-section of the ring; 2k  is the amount of rings,  

zq   are the components of pressure force acting on the 

cylindrical shell as viewed from fluid and        
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the cylindrical shell and rings are satisfied: 
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The movement of fluid moving with velocity U with 

respect to the potential  is in form [10]: 
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In the radial direction the equality of velocity and 

pressure in the contact of a shell-fluid satisfied:   

0
1

r r R
r R r R

w w
U

r t R


 

=
= =

   
= = − + 
   

 (9) 

z r R
q p

=
= −  (10) 
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So, the solution of the stated problem is reduced to 

joint integration of the total energy (6), the system of 

motion equations of fluid (8) of a cylindrical shell with 

flowing fluid in its interior domain and strengthened with 

discretely distributed rings within the boundary 

conditions (12).  

 

3.PROBLEM SOLUTION 

In the expression (6) the quantities are 
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     Since the system (15) is homogeneous, for the 

existence of its non-zero solution the principle 

determinant should equal zero. As a result, we get the 

frequency equation: 
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4. CONCLUSIONS 

      Equation (16) was studied by the numerical method. 

The following estimations were taken for the medium and 

shell parameters: 
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Figure 1. Dependence of frequency parameter on the amount of rings, 

1 is a linear law, 2 is a parabolic law 

 

The result of calculations was given in Figure 1 in the 

form of dependence of the frequency parameter on the 

amount of rings, in Figure 2 in the form of dependence of 

frequency parameter on the fluid motion speed. The 

linear case of heterogeneity laws correspond to curve 1, 

parabolic change cases of heterogeneity laws correspond 

to curve 2.  
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Figure 2. Dependence of frequency parameter on the fluid movement 

speed, 1 is a linear law, 2 is a parabolic law 

 

Calculations show that vibration frequencies 

corresponding to the linear case of heterogeneity laws are 

greater than vibration frequencies corresponding to the 

parabolic change case. As can be seen from the figure, 

increasing the amount of rings, vibration frequencies of 

the system at first increase, and after certain value when 

the inertia effect of ribs intensifies, they decrease. As can 

be seen from Figure 2, increasing fluid movement speed, 

vibration frequencies of the system decrease. 
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