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Abstract- In this paper, we study vibrations of flowing 

fluid-filled viscous-elastic cylindrical shell stiffened with 

rings. By means of the Ostrogradsky-Hamilton variation 

principle, the system of motion equations of the system 

under consideration was obtained, and based on this 

system a frequency equation was structured. The roots of 

the obtained frequency equation were found by the 

numerical method and the graph of their dependence on 

the motion speed of fluid was built for different 

characteristic parameters. It was shown that increase in 

the motion speed of fluid and of the viscosity of the shell 

material cases decrease of natural vibration frequencies of 

the system and their vanish at certain values of speed. 

This a frequency at which a shell loses its stability.  

 

Keywords: Shell, Viscous-Elastic, Frequency, 

Orthotropic, Ring. 

 

1. INTRODUCTION                                                                         

At present the analysis of deformation and strength of 

ribbed shells made of composite materials is of particular 

relevance when calculating which it is necessary to take 

into account the anisotropy of the rigidity and strength of 

the shell and ribs, influence of flowing fluid. 

Natural vibrations of a smooth isotropic cylindrical 

shell in an infinite elastic medium were studied in [1].   

One of the dynamic rigidity characteristics, natural 

vibration frequencies of a system consisting of a soil-

contacting viscous-elastic orthotropic cylindrical shell 

stiffened with discretely distributed rods was studied in 

[2] using the Hamilton-Ostrogradsky variational 

principle. A frequency equation for finding the rots of 

vibration frequencies of the system was constructed and 

influence on physical geometrical parameters 

characterizing the system on these roots were studied.  

Ref [3] was devoted to one of the dynamical rididity 

characteristics, natural vibrations frequencies of a system 

consisting of a solid medium-filled viscous-elastic 

orthotropic cylindrical shell stiffened with discretely 

distributed ring-shaped ribs. Using the Hamilton-

Ostrogradsky variational principle, a frequency equation 

for finding vibrations of the system under consideration 

was constructed and were studied depending on physical 

and geometrical parameters characterizing the system.  

Free vibrations of an isotropic inhomogeneous, 

moving fluid-contacting cylindrical shell stiffened with 

cross system of ribs were studied in [4]. The vibrations of 

an anisotropic cylindrical shell stiffened with cross 

system of ribs were considered in [5]. Natural and forced 

axially-symmetric vibrations of a cylindrical shell fluid 

with fluid a fluid-filled isotropic loaded with axial 

compressive forces were considered in [6, 7]. Free 

vibrations of fluid-filled isotropic cylindrical shells 

stiffened with annular cross system of ribs under the axial 

compression and with regard to dislocation o ribs were 

researched in [8, 9]. 

In the paper [10] natural vibrations frequency of the 

system is studied that consisting of a solid medium-filled 

elastic-plastic orthotropic cylindrical shell strengthened 

with discretely distributed rings established on a plane 

perpendicular to its axis. Utilizing the Hamilton-

Ostrogradsky principle, a frequency equation for 

determining vibration frequencies of the system 

following consideration was created; its roots were 

obtained by mathematical method. 

     In this paper [11] free vibrations of an orthotropic, 

laterally stiffened, ideal fluid-filled cylindrical shell 

inhomogeneous in thickness and in circumferential 

direction is studied. Using the Hamilton Ostrogrdasky 

variational principle, the systems of equations of the 

motion of an orthotropic, ideal fluid filled cylindrical 

shell stiffened in thickness and circumference, are 

constructed.  

In order to calculate inhomogeneity of the shell 

material in thickness and circumference, it is accepted 

that the Young modulus and the density of the material of 

the shell are the functions of normal and circumferential 

coordinates. Frequency equations are constructed and free 

vibrations of an orthotropic, ideal fluid-filled, laterally 

stiffened cylindrical shell inhomogeneous in thickness 

and in circumference are numerically implemented. The 

characteristically dependence curves were constructed.    

In the present paper, by means of the variational 

principle we solve a problem on natural vibrations of a 

transversely stiffened flowing fluid-filled orthotropic 

viscous-elastic cylindrical shell.  
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2. PROBLEM STATEMENT 

Based on the Ostrogradsky-Hamilton variational 

principle we get differential equation of motion for an 

ideal flowing fluid-filled, transversely stiffened 

orthotropic cylindrical shell. To apply the Ostrogradsky-

Hamilton principle, we preliminarily write the total 

energy of the system. 

We can write orthotropic cylindrical in shell the form 

[13]: 
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1 2,E E   are the main module of elasticity of the 

orthotropic material, R  denotes the radius of shell 

median surface of the shell, h  is shell’s thickness, , ,u v w  

denotes the components of displacements of the points of 

the shell median surface,  1 2 1 2, , ,x x y y  are the coordinates 

of curvilinear and rectilinear edges of the shell; 

, , ,j zj yj kpjF J J J  are the area and inertia moments of the 

cross section of the jth cross rod with regard to the axis 

Oz  and the axis parallel to the axis Oy  and passing 

through the gravity center of the section and also its 

inertia moment at torsion; ,j jE G   are module of 

elasticity and shift of the material of the jth cross rod, 

respectively, t  is a time coordinate, 1 0t t= , 

( )
1

0 2 2
0

,
1

E

v R

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=

−
 0 ,   are densities of materials 

from which the shell was made, i  is a longitudinal rod, 

respectively.  

We represent the expressions for inner forces and 

moments as follows: 
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The stresses ij  and strains ij  in the median surface 

in relations (2) are determined in the following way: 
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The equations of motion of a ribbed orthotropic shell 

with flowing fluid, were obtained based on the 

Ostrogradsky-Hamilton stationarity of action principle: 
 

0W =  (5) 

where, 

t

t

W Ldt





=   is Hamilton’s action, L K= −  is a 

Lagrange function, t  and t  are the given arbitrary 

moments of time. 

Supposing  that the main speed of flow equals U  and 

deviations from this speed are negligible, we use a wave 

equation for the potential of perturbed speeds 
 
with 

respect to [14]: 
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Continuity of radial speeds and pressures on the 

contact surface a shell-fluid is observed. The condition of 

impermeability or smooth flow at the shell wall is of the 

form [14]: 

0
1
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Equality of radial pressures as viewed from fluid on 

the shell 

z r R
q p

=
= −   (8) 

Complementing by the contact conditions (7), (8) the 

expression for the total energy equation motion shell (1), 

the of fluid (6) we arrive at a problem on natural 

vibrations of flowing fluid-filled orthotropic cylindrical 

shell stiffened with longitudinal ribs. 
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3. PROBLEM SOLUTION 

We will look for shell displacements in the form:  
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where, 0 0 0, ,u w  are unknown constants; ,n   are wave 

numbers in longitudinal and peripheral directions, 

respectively. 

Using (6)-(8), we can determine pressure as viewed 

from fluid on the shell:          

2 2 2
2 2
0 02 2 2

11

2n m

w w w
p U U

R tt R
   

 

   
= + +     

 

(10)

          

 

where,                       

1

1

11

( )
, 1

( )

( )
, 1

( )

, 1

n

n

n
n

n

n

n

I r
M

I R

J r
M

J R

r
M

nR











−







 = 



 =


 

 (11)
 

where, 

0 1
1

0

/U R
M

a

  +
=  

0 1
1

0

2 2 2 2
1

/

(1 )

U R a
M

a

R M

 

 −

+
=

= −

 

2 2 2 2
1 1( 1)R M −= −  

nI  is a modified Bessel function of first kind, and nJ  is 

nth order Bessel functions of the first kind. 

After substitution of (10), (9) in (5), the problem is 

reduced to the homogeneous system of third order linear 

algebraic equations: 
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The nontrivial solution of the system linear algebraic 

Equations (12) is possible only is the case when 1  is the 

root of of third order its determinant. The definition of 1  

is reduced to a transcendental equation since 1  enters to 

the arguments of the Bessel function .nJ  

  

4. CONCLUSIONS 

Let us consider some results of calculations carried 

out proceeding from the above dependences. For 

geometrical and physical parameters that characterize the 

shell and medium materials we accept: 
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Figure 1. Dependence of the frequency parameter on the flow speed for 

a system of cylindrical shell with flowing fluid and stiffened with 

transverse systems of ribs 

 

Dependence of the frequency parameter 1   on 

relative speed of flow 0/ ,  U U c c R = =
 
for different 

values of   and n  are given in Figure 1. In these graphs, 

the dotted lines correspond to vibrations of a flowing 

fluid-filled, transversely stiffened elastic cylindrical shell, 

the solid lines to vibrations of a flowing fluid-filled, 

transversely stiffened viscous-elastic cylindrical shell. It 

is seen that increase in the speed and account of viscosity 

of the shell material leads to frequency reduction. It is 

important to note the values of U  under which 

frequency of vibrations vanishes. Obviously, here a loss 

of stability of the shell should occur. 
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