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Abstract- In this paper, we study one of the dynamical 

strength characteristics, the frequency of natural 

vibrations of a fluid-filled cylindrical shell made of a 

fiberglass and stiffened by longitudinal ribs 

inhomogeneous in thickness, in circumference and along 

the generatrix under the Navier boundary conditions. 

Using the Hamilton-Ostrogradsky variational principle, 

the frequency equations for calculating natural vibrations 

of the system under investigation are constructed. In the 

course of calculations, linear laws for the heterogeneity 

function were accepted. The constructed frequency 

equations are realized numerically. The results of 

calculations of eigen frequencies of vibrations are 

represented in the form of dependence on the 

inhomogeneity parameter, on the number of lateral ribs 

under various values of wave formation parameters. The 

characteristically dependence curves are constructed.   

 

Keywords: Longitudinally Stiffened Shell, Variational 
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1. INTRODUCTION                                                                         

Polymer, hydro carbon, metal, organic-based 

composites, porous aluminum are widely used in various 

branches of technology. The basic constant load acting on 

a shell is its proper weight. To reduce this load, the use of 

lightweight porous materials with low bulk density and 

other useful properties is promising, but they have lower 

strength characteristics. To compensate for this 

shortcoming, technological heterogeneity is created, and 

another material with higher strength characteristics is 

introduced for creating heterogeneity in load-carrying 

structures.  

 As a result of this, technological heterogeneity 

appears in the structure. Furthermore, to apart more 

rigidity, the thin-walled part of the shell is stiffened by 

ribs and this significantly increases its strength with a 

slight increase in the mass of the structure even if the ribs 

have a small height. The use of polymeric materials in 

particular of fiberglass in engineering practice, makes 

sure to take into account anisotropy of elastic properties 

when studying low frequency vibrations of shells.  

Therefore, there arises a necessity to develop methods 

for calculating such heterogeneous shells and studying 

influence of heterogeneity on the frequency of their 

natural vibrations. We need algorithms for calculation of 

resonance frequencies reducing to failure of 

heterogeneous shells.        

Note that paper [1] studies free vibrations of an 

orthotropic, soil-contacting cylindrical shell 

heterogeneous in thickness and stiffened by annular ribs. 

To account heterogeneity of the material of the shell in 

thickness, it is accepted that the Young modulus and 

density of the material are the functions of normal 

coordinate. Using the Hamilton-Ostrogradsky variational 

principle, the frequency equations were constructed and 

implemented numerically. In the course of calculations, 

linear and parabolic laws for the heterogeneity function 

were accepted. The characteristic curves of dependence 

were structured.  

The paper [2] was devoted to the study of free 

vibrations of a longitudinally stiffened orthotropic, 

flowing fluid-contacting cylindrical shell heterogeneous 

in thickness. Using the Hamilton-Ostrogradsky 

variational principle, and accepting that the Young 

modulus and the material density are the functions of a 

normal coordinate, the frequency equations were 

structured and implemented numerically   

In the paper [3], frequencies of free vibrations of a 

structurally anisotropic, flowing flow-contacting 

homogeneous cylindrical shell made of a fiberglass and 

stiffened by annular ribs are found under Navier 

boundary conditions. The results of calculations of 

natural frequencies of vibrations are represented in the 

form of dependences on spinning angle of a fiberglass for 

a shell made of a textile fiberglass and on the velocity of 

flowing fluid for various values of wave formations 

parameters and different ratios between the parameters 

characterizing geometrical sizes of the shell.  

The papers [4, 5, 6] were devoted to the research of 

parametric vibrations of a linear rod nonlinear and 

heterogeneous in thickness in a viscous-elastic medium 

by using the Pasternak contact model. The influence of 

the main factors, elasticity of the foundation, 
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damageability of the rod and shell material, dependence 

of the shift factor on the frequency of vibration on the 

characteristics of longitudinal vibrations of the points of 

the bar in a viscoelastic medium, was studied. In all the 

cases under investigation the dependences of the dynamic 

stability zone of the rod vibration in a viscoelastic 

medium on the parameters of the construction on the 

plane a load-frequency were structured.  

The paper [7] studies free vibrations of a 

longitudinally stiffened, orthotropic, moving fluid-

contacting cylindrical shell heterogeneous in thickness. 

Using the Hamilton-Ostrogradsky variational principle, 

the systems of equations of motion of a longitudinally 

stiffened, orthotropic, flowing fluid-contacting cylindrical 

shell heterogeneous in thickness, were structured. 

Heterogeneity of the shell material in thickness was taken 

into account accepting that the Young modulus and the 

shell material’s density are the functions of a normal 

coordinate. Frequency equations were structured and 

implemented numerically. In the course of calculation, 

linear and parabolic laws for the heterogeneity function 

were accepted. The characteristically curves of 

dependences were structured. If the shell has geometrical 

and physical nonlinearity, the equations describing its 

stress-strain state become complex nonlinear partial 

differential equations and, in the paper, [8] a method of 

successive approximation was structured for solving 

them. Derivation of these equations are given in [9, 10]. 

In [10] a two-step method of successive perturbation of 

parameters was developed to reduce the error of 

linearization of the equation and calculation time.  
 

2. PROBLEM STATEMENT 

The problem under consideration is solved by means 

of the Hamilton-Ostrogradsky variational principle. To 

apply the Hamilton-Ostrogradsky principle we write the 

total energy of the structure under consideration. The 

structure studied consists of a cylindrical form 

heterogeneous shell and stiffening longitudinal ribs the 

number of which vary. Furthermore, the structure is fluid-

contacting (Figure 1(a)).  

To account the heterogeneity in thickness of the 

cylindrical shell, we will procced from a three-

dimensional functional. In this case, the functional of 

total energy of the cylindrical shell is of the form: 
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      There are various ways to account for heterogeneity 

of the shell material. One of them is that the Young 

modulus and the shell material’s density are accepted as 

functions of a normal, lateral and longitudinal coordinate 

[11]. It is assumed that the Poisson ratio is constant. In 

this case the stress strain-state is of the form: 
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Taking into account (4) in (2), we get: 
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(5)        

where, 0E  is an elasticity modulus of shell’s 

homogeneous material, 0  is the density of the shell’s 

homogeneous material. Allowing for (5), the functional 

of total energy of the cylindrical shell is of the form: 
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Figure 1. Longitudinally stiffened heterogeneous cylindrical shell 

 

The expression for potential energy of elastic 

deformation of the ith longitudinal bar is as follows:  
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 The kinetic energy of ribs are written as follows: 
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In expressions (7) and (8) , ,i i iu w  are displacements 

of the points of rods used in stiffening, iF  is the area of 

cross-section of the i-rod attached to the shell in the 

direction of the generatrix, iE
 
is an elasticity modulus 

when stretching the ith rod attached to the cylindrical 

shell in the direction of the generatrix, yiJ  and ziJ  are 

the moments of inertia of the ith rod with respect to the 

axis passing from the gravity center of the lateral cross-

section, kpiJ  is the inertia moment when twisting the ith 

rod,  t  is time, i  is the density of the material of the ith 

longitudinal rod, ( ), ( )i крix x   are the angles of rotation 

and torsion of the rod’s cross-section and are expressed 

by the displacement of the shell as follows: 
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The potential energy of external surface loads acting 

as viewed from fluid and applied to the shell is 

determined as a work performed by these loads when 

taking the system from the deformed state to initial under 

formed state and is represented in the form: 
2

0
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= −    (9) 

The total energy of the system equals the sum of 

energy of elastic deformations of the shell and all 

longitudinal ribs and also potential energies of external 

loads acting as viewed from fluid: 
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where, 2k  is the amount of longitudinal ribs. 

The surface load ,rq
 
acting as viewed from fluid on a 

longitudinally stiffened shell is determined from the 

solution of the equation of motion of ideal fluid [12]: 
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where,   is a perturbation potential, and 0a  is velocity 

of perturbations propagation in fluid. 

On the contact surface a shell-fluid we observe 

continuity of radial velocities and pressures. The 

condition of impermeability or smooth flow at the shell 

wall is of the form:  
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Equality of radial pressures as viewed from fluid on the 

shell:  

r r Rq p == −  (13) 

By means (11), (12) and (13), we can represent 

pressure p
 
as viewed from fluid on the shell, in the form 
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where, nK  is nth order modified Bessel function of 

second kind, and nN  is nth order Bessel or Neumann 

function of second kind.  

It is a considered that the hard contact conditions 

between the shell and rods are satisfied: 
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where, 
1
iH  is the distance from the ith rod to the surface 

of the cylindrical shell, ih  is the thickness of the ith 

longitudinal rod.   

It is supposed that on the lines 0x =  and x l=  the 

following Navier boundary conditions are fulfilled: 

11 11
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where, l  is the length of the shell, and 11 11,T M  are force 

and moment acting on cross-sections of the cylindrical 

shell (Figure 1(b)). 

The frequency equation of a ridge heterogeneous shell 

with flowing fluid was obtained on the base of 

Ostrogradsky-Hamilton principle of stationarity of action: 

0W =  (17) 

where, 

t

t

W Jdt





=  is Hamilton’s action, t  and t  are the 

given arbitrary times. 

Complementing with contact conditions (12) and (13) 

the total energy of the system (10) and the equation of 

motion of fluid (11), we arrive at a problem of natural 

vibrations of a fluid-contacting cylindrical shell 

heterogeneous in the main coordinate directions and 

stiffened by longitudinal ribs. In other words, a problem 

of natural vibrations of a fluid-contacting cylindrical shell 

heterogeneous in the main coordinate directions is 

reduced to joint integration of the expression for total 

energy of the system (10), the equation of motion of fluid 

(11) subject to conditions (12) and (13) on their contact 

surface and boundary conditions (16). 

 

3. PROBLEM SOLUTION 

       In the expression (10) , ,u w  are varying quantities. 

These unknown quantities are approximated as follows:  
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where, 0 0 0, ,u w  are unknown constants; ,n  are wave 
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  = = = =  and  is 

a desired frequency. 

To calculate work (9), by means of (14) we find the 

contact surface force .rq When simplifying (10) the 

following dependences are accepted [13]:  

1 2 3( ) 1 ,  ( ) 1 ,  ( ) 1
2

z x
f x f x f x

h l R


  


= + = + = +  (19) 

where, , ,    are constant parameters of heterogeneity 

in the direction along the normal, along the shell’s 

generatrix and in the peripheral direction, respectively, 

and , , [0,1].                                           

Substituting solution (19) in (10) and taking into 

account expression (18), for the total energy (10) we get a 

second order polynomial with respect to constants

0 0 0, ,u w : 

2 2 2
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The expressions for the coefficients 

11 22 33 44 55 66, , , , ,     
 have a bulky form, therefore we 

do not give them here. If we vary the expression   with 

respect to the constants 0 0 0, ,u w and equate to zero the 

coefficients of independent variations, we get the 

following system of homogeneous algebraic equations:  
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Since the system (20) is a homogeneous system of 

linear algebraic equations, the necessary and sufficient 

condition for its non-zero solution is the equality of its 

principle determinant to zero. As a result, we get the 

following frequency equation:  
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We write equation (21) in the form 
2 2 2

11 22 33 44 55 66 55 22 66 11 44 334 0           + − − − =  (22) 

Equation (22) was calculated by the numerical method.  

 

4. NUMERICAL RESULTS 

As equation (22) is contained in the sought-for 

modified nth order second kind Bessel function Kn and 

the Neumann function, it is a transcendental equation. For 

finding its roots the value of the left hand side of the 

equation is calculated for the small steps of 1 and an 

interval is found according to the change of sign.  

  The found interval is calculated again for smaller 

steps of 1 and again is determined according to the 

change of sign. This proses is continued until the 

necessary accuracy is obtained. The roots of the Equation 

(22) calculated to within 0.001. 

   The parameters contained in the problem solution were 

accepted as: 
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The results of calculations are given in Figure 2 in the 

form of dependence of the frequency parameter on the 

amount of longitudinally stiffening rods 1k  on the shell 

surface, in Figure 3 in the form of dependence of the 

frequency parameter on the heterogeneity parameter in 

the direction of the shell’s generatrix .  

As can be seen from Figure 2 with increasing the 

amount of longitudinal ribs, the value of the frequency 

parameter at first increases, and then decreases attain 

maximum. This is explained by the fact that with 

increasing the amount of longitudinal ribs, at first the 

rigidity of the structure increases. Further, with increasing 

the number of longitudinal ribs their inertial properties 

prevail. As the heterogeneity parameter increases in the 

direction of the shell generatrix  as can be seen from 

Figure 3, the value of frequency parameter increases.  
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Figure 2. Dependence of frequency operator on k1 

 

 
 

Figure 3. Dependence of frequency operator on  
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