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Abstract- Based on operator calculus of generalized 

functions the general operational method of solution in 

distributions has been developed for differential and 

integro-differential equations of state and analysis of 

transient processes in linear electric pulse circuits with 

concentrated elements. The applicability of this method 

for the linear electric pulse circuits with concentrated 

parameters at different sources of discontinuous actions is 

shown. 
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1. INTRODUCTION 

If there are pulse sources, as well at some 

commutations, voltages and currents are not limited in 

magnitude.  Reducing of the time of occurrence of real 

perturbations to infinitesimals and the transition to an 

idealized, instantly arising perturbation lead to the 

exclusion of all accompanying phenomena in the 

construction of models of transient processes [1, 2, 3].  

The situation changed only after the construction of 

theory of generalized functions [4]. The main provisions 

of the well-known method of drawing up and solving of 

equations of electric circuits within the apparatus of 

continuous functions were subjected to critical analysis 

and revision from the positions opened by generalized 

functions. The generalized Kirchhoff laws for currents 

(KLC) and voltages (KLV) were formulated, which 

determine the relationships between the instantaneous 

voltages and currents directly before and after the 

moment of disturbance of discontinuity of these values, 

from which the equations of instantaneous values are 

obtained as effects of equations in generalized functions.  

In paper [5] methods of research of transient 

processes in linear pulse circuits with concentrated 

parameters are considered on the basis of use of two 

modifications of one-sided Laplace transform 

 { } ( )L f t F p+ +=  and  { } ( )L f t F p− −=  on originals 

being generalized functions of type 

( ){ } ( )1( ) ( )1( ) ( )
q k

k o
f t f t t f t t Ck t− + =

= − + + ,   where  

The ( ), ( )f t f t− +  are smooth functions, having 

continuous derivatives of any order; q is arbitrary integral 

positive number; δ(t) is delta function; 1(t) is Heaviside 

unit function; L+ and L- are Laplace transforms with 

lower limit 0+ and 0- respectively, at the same time it is 

accepted that  ( ) 0L t+ =  and  ( ) 1L t− = . Image 

reversal ( )F p−  coincides with image reversal ( )F p+ , at 

the same time    1 1( ) ( )L F p L F p− −
− − + += , which F(t), 

L(t) define only a regular composition of the solution and 

for the finding of coefficients Ck of functions of 

singularities one has to use a limit value of image ( )F p−  

at p → , 1 1

( ) ( )
lim ,  lim . ,q q

q

F p F p
Cq C Cq p

p p

− −
− −

 
= = − 

 
 

etc. 

Peculiar method of construction of operator calculus 

was proposed by Y. Mikusinsky [6]. In Y. Mikusinsky's 

operator calculus, the ring of “operators” of /f g  type 

with convolution as a multiplication operation is 

considered, where f and g are functions on [0, ∞), having 

no more than finite number of break points. Despite the 

formal similarity of the Laplace transform and 

Mikusinsky’s operator calculus, they are not equivalent. 

The Laplace transform method restricts the application 

limits of the operator calculus to the class of functions f(t) 

for which the Laplace transform converges. If generalized 

functions as regards Schwarz distribution [12] with 

carriers on semiaxis [0, ∞), for which the addition 

function is defined as a convolution, are understood by f 

and g, then we obtain K+
  ring without zero divisor. In 

the K+
  ring set of all relations /f g  coincides with set 

D+
  of all generalized functions with the carrier bounded 

from the left and with these relations one can operate 

according to ordinary rules of algebra.  

The generalized functions /f g D+
  may be called 

as operators, and the above-mentioned algebra on them – 

operator calculus for generalized functions. First results 

in this direction are obtained by Schwarz [7]. Application 

of this theory to the solution of some equation classes, 

containing generalized functions, is considered in [8,9].  
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The substantiation of operator method of solution of 

linear ordinary differential equations and systems with 

constant coefficients, the right parts of which are 

generalized functions with the carrier bounded from the 

left, is given in paper [10], where the solution 

presentation in the form of generalized function from K+
  

for both the equations and systems themselves, and initial 

value problem (Cauchy problem) is obtained. Differential 

equations with pulse actions were studied in several 

papers (see, for example, [11, 14]), papers [5, 15-21] are 

dedicated to pulse electric circuits.  

The paper objective is to show that the application of 

the operator calculus in the space of generalized functions 

gives a solution of distribution for the wide class of, 

generally speaking, differential and integra-differential 

equations non-transformed by Laplace, describing the 

transient processes in the linear electric pulse circuits 

with concentrated parameters, being time-constant or 

time-variable. 

 

2. OPERATOR CALCULUS IN THE SPACE OF 

GENERALIZED FUNCTIONS 

If K   is a set of all generalized functions f{t}, then 

the set of all  generalized functions is designated through 

K+
 , carriers (i.e. set of points t, in which f{t} ≠ 0) of 

which are located on the [0, ∞) semiaxis, and through D+


is set of all generalized functions with the carrier bounded 

from the left. Each of sets K+
  and D+

  is linear subspace 

of K   space. By convolution *f g  of two generalized 

functions f and g is understood the generalized function, 

determined on any primary function φ(t) by the following 

equation: 

( * , ) ( ( ), ( ( ), ( )))f g g t f t   = +  (1) 

If in the K+
  and D+

  spaces along with the addition 

operation the multiplication operation as convolution (1) 

is determined, then K+
  and D+

  will be commutative 

rings without zero divisors. Generalized function u, 

satisfying the equation *f u g= , where f and g belong 

to K+
 , is designated through /f g . Set of all such 

generalized functions /u f g=  coincides with D+
 . 

These functions are named operators. It is proved in [34] 

that the D+
  ring is isomorphic (i.e., one-to-one 

correspondence) to subring of M field of Mikusinsky’s 

operators. Thus, the field of Mikusinsky’s operators is 

wider than D+
 . Let 

1

{ }
( )

t
t






−
+ =


 is generalized 

function from [4] (the so-called λ-order Heaviside 

function), where Γ(.) is gamma function and function t+
λ 

is equal to tλ, at t > 0 and 0 at t ≤ 0, Φ1=η{t} is λ=1 order 

Heaviside function, Φ0(t)=δ(t). At any complex λ the 

generalized function Φλ{t} belongs to K+
 . On the basis 

of properties of convolution of two generalized functions 

from D+
 , for any generalized function { }g t D+

  the 

following convolution is defined: 

{ } { } { }g t g t t =   (2) 

Along with the Heaviside function 1{ } { }t t =  , we 

will also use  the so-called Heaviside jump 

1 ,  0
{ }

0 ,  '

t
t

t




 
=  

 
 and Dirac pulse 

( ) ( ) { }.t t D t    = − =  Using operators ( )( )s t =  

and  l t
=  , ( )sl t= , the differentiation formula 

of order λ of generalized function { }g t D+
  one can 

write in the form: 
( ){ } { } { }* ( )D g t s g t g t t  = =  (3) 

and formula of integration of order λ is in the form: 

{ } { } { }* { }D g t l g t t g t 


− = =   (4) 

Differentiation of product of smooth function ω(t) and 

generalized function { }g t D+
  is performed according to: 

( )
( ( ) ) . ( )

d t
D t f f t Df

dt


 = +  (5) 

being an analog of Leibniz formula for the differentiation 

of product of two ordinary functions. Having taken into 

account the relation   ( )  *t t t  =  and filtering 

feature of the gamma function: ( ) ( ) ( ) ( )0t t t   = , 

from (5) at     f t t= . Let’s we’ll obtain Equation (6): 

( )   ( )   ( ) ( ).( . 0s t t t t t      = +  (6) 

 

3. SOLUTION IN DISTRIBUTIONS OF ORDINARY 

DIFFERENTIAL EQUATIONS WITH CONSTANT 

COEFFICIENTS 

Let’s consider nonhomogeneous system of equations 

      ,  0x t Ax t f t t − =   (7) 

where,      ( )0 1 1 }, , , {nf t f t f t f t−=   is generalized 

vector-function (column) with components 

  ( )  0,1, , 1jf t D j n+
 =  −  and A is matrix of constant 

coefficients ( ), 0,1, , 1kja k j n=  − . Let’s put the 

following algebraic equation in operator area in 

correspondence with the system (7) 

( )   ( )–sE A x t f t=  (8) 

where, s is operator of differentiation in D+
 ; E is unity 

matrix. Equation (8) is a result of application of the 

differentiation Equation (6) to (7). Solution 

     ( )0 1 1 },  ,  {, nx t x t x t x t−=   of system (8) is 

presented as   ( )  
1

sx t E A f t
−

= − , hence scalar 

Equations (9): 
( , )

1 1

0

( )
{ } { } , ( 0,1,..., 1)

( )

i j
ni n

jj
n

Q s
x t f t i n

P s

− −

=
= = −  (9) 

where, Pn(s) is polynom of power n from s, equal to 

determinant sE A− , and ( )( , )
1

i j
nQ s−  is polynom of 

power n-1 from s, equal to coefficient at fj{t} in 

determinant obtained from the determinant sE A− , 

replacing its (i+1) column by f{t} column.  
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In this case transfer functions 

( , )
( ) 1 ( )

( )

i j
ij n

n

Q s
W s

P s

−=  are 

proper rational fractions. Any rational fraction with real 

coefficients: 
1

0 1

1
1

( ) ...
( )

( ) ...

m m
m n

n n
n n

Q s b s b s b
F s

P s s a s a

+

−

+ + +
= =

+ + +
 (10) 

is presented in the form sum: 

1

0

( )
( ) ,

( )

m n k n
kk

n

Q s
F s C s

P s

− −

=
=  +  where Ck is real 

numbers and Qn-1(s) is polynom of power n-1 from s with 

real coefficients. Realization of rational fraction F(s) with 

real coefficients from operator s of differentiation in D+
  

is presented by real generalized function from K+
  of 

form [10] 

( )

0

( ) { } ( )
m n

k
k

k

w t t C t 
−

=

 +  (11) 

where, ω(t) is smooth function equal to weighted sum of 

exponential and trigonometric functions with weighting 

coefficients, being polynoms from t with real coefficients 

determined from formulas (11). At m < n the sum on k in 

(12) is absent. Based on (11), the expression (9) for 

components xi{t} of solution x{t} of system (7) will be 

written as: 

( )
1

( , )

0

0 1{ } ( )( { } 1* {  , ,) , ,}
n

i j
i i

j

x t t t f t i n 
−

=

= =  −  (12) 

where, ω(i,j)(t) is smooth functions representing the sum 

of coefficients at function η{t} in realization of partial 

fractions, being a part of fractions 
( , )

1 ( ) / ( )
i j

nnQ s P s−  from 

(9), the multiplication operation in the space D+
  is 

defined as the convolution *f g , and multiplication by 

ω(i,j)(t) is determined according to rule of multiplication 

of generalized function by infinitely differentiable 

function.  

If the right part of the system (7) is an ordinary 

vector-function ( ) ( ) ( ) ( )( )0 1 1, , , nf t f t f t f t−=  , where 

( )( )0,1, , 1if t i n=  −  are functions, measurable and 

majorized by functions summable on [0, ∞), then there is 

a unique solution ( ) ( ) ( ) ( )( )0 1 1,  , , nx t x t x t x t−=   [22], 

determined at t ≥ 0 and complying with the system at        

t > 0 in common (classic) sense: 

( ) ( ) ( )–x t Ax t f t =  (13) 

and initial condition ( ) ( )0 1 10 ,  ,  , nx x x x − =   , where 

( )0,1, , 1ix i n=  −  are desired numbers. Let’s designate 

through  f t  a vector-valued functional 

     ( )0 1 1 }, , , {nf t f t f t f t−=  , where 

  )  0,1 , 1( ,if t i n=  −  are regular functionals from K+
  

type functions, equal to 0 at t < 0 and equal to  if t  at     

t > 0.  

Let’s construct an auxiliary system of differential 

equations in generalized functions 

  ( ) ( ) ( ) ( ) , – 0xx t A t f t x t = +  being a system of form 

(7) with the right part ( ) ( ) )  (0f t x t+  from the K+
 . 

According to Equation (9), the solution 

     ( )0 1 1 }  , {, , nx t x t x t x t−=   of Cauchy problem for 

the Equation (13) will be written as: 

( )
( , )1

1

0

{ } ( ( ) (0) ( )) , 
( )

0,1, , 1

i jn
n

i j
ni

Q
x t fj t x t

P s
i n

−
−

=

== + −  (14) 

Considering the formula   ( )  *t t  , (14) can be 

written in the form: 
1

( , )

0

{ } { }*( { } (0))
n

i j
i i j

i

x t t f t x 
−

=

 = +   (15) 

where, ω(i,j) is smooth functions from (12). 

 

4. SOLUTION IN DISTRIBUTIONS OF LINEAR 

DIFFERENTIAL EQUATIONS WITH VARIABLE 

COEFFICIENTS 

Let’s designate through 0( )D t  the space of 

generalized functions f, so that ( ) 0f t =  at t < t0, i.e. on 

each primary function φ(t) with φ(t)=0 at t ≥ 0, value 

( ), 0f  = . Let’s consider a system of linear differential 

equations: 

( )   ,  0.  Dx A t x f t t= +   (16) 

where, n×n is assumed smooth for matrix A(t), 

( ) ( ) ( )( )1 , ,
tr

nx t x t x t=   and   ( )0  1, ,f t D t i n =  , tr 

is transposition sign. Let’s designate through ( ).Y  is n×n 

matrix, being the solution of Cauchy problem: 

( ) ( )0 ,  Y YA t Y t E = − =  (17) 

where, E is unity n×n matrix; and t0 ≥ 0. 

From existence theorem and uniqueness [23] of 

solution x(t) of the system of equations 

( ) ( )  ,  0x t A t x t=   (18) 

with matrix ( ) ( ) ( ) , , 1, ,ijA t a t i j n= =  , definite and 

continuous on (0, ∞), the x(t) solution is definitely 

determined at desired “initial” value x(t0)=x°.  

Fundamental matrix x(t), composed from linear-

independent solutions of system (18), corresponding to 

various vectors 
)0 1 0 2 0( ) ( ) (,  , , nx x x  of values x(t0) with 

nonsingular matrix ( ))0 1 0 (2
0

( ) ( ) 0 ,  , , nX x x x=  , 

0 0X  , is called [24] integral matrix, and at 0X E=  is 

normalized integral matrix X(t) or matrix 
0
( )t

t A  or just 

0

t
t . Determinant of any integral matrix X(t), according 

to Jacobi identity, is represented in the form 

( )
0

.exp

t

t

X spAdtt c
 
 
 
 

=


 , where c is constant matrix,  and  
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11 22 nnspA a a a= + ++  is spur of matrix A. For the 

normalized integral matrix c=E. Hence it follows that 

Y(t) at any t is nonsingular matrix. 

Integral matrix ( )
0
( )t

t AX t =  is defined by 

convergence method using recursion formula 

0

1 0( ) ( ) ( ) ,  1,2..., ( )

t

k k

t

X t A t X t k X t E−= = =  and is 

represented in the form of absolutely and uniformly 

convergent series on ( ) ( ), 0,a b =  

0 0 0

1 1( ) ( ) ( )( ( ) ) ...

t t t

t t t

X t E A d A A d d     = + + +    (19) 

matrix 
0

t
t  can be calculated approximately in the 

following manner [24]. Let’s divide the main interval 

(t0,t) into n parts, introducing passing points 

1 2 1,  ,  ,  nt t t −  and assume 

( )1 01,2, , ;  k k kt t t k n t t− = − =  = .  

Based on the property of matrix 

1 1

0 0
0 0 1( , , ( , ))

t tt
t t t

t t t a b =     we will obtain 

2 1

0 1 0
1... .

t tt t
t tn t t− =     Let’s choice passing point 

( ).1, 2,k k n =   Then, assuming ∆t as first order small 

value (designating them by asterisk (*)), when calculating 

1
kt

tk−  with accuracy to second order small values one 

can accept ( ) ( )const kA t A  =  (because of continuity 

of function A(t) on (a,b)).  

Then 
( )

1 (**) ( ) (**)k kA ttk
tk k ke E A t

 
− = + = +  +  

(by property of integral matrix for linear system of 

differential equations with constant coefficients), where 

symbol (**) designates a sum of members, starting from 

the second order infinitesimal. Hence, we find: 

1 12 2
( )( )( )

0 ... (*)
A t tA t tt A tn tn

t e e e
 =  +  (20) 

0 2 2 1 1[ ( ) ]...[ ( ) ][ ( ) ] (*)t
t n nE A t t E A t t E A t t = +  +  +  +  (21) 

The equation (12) can be used for the approximate 

calculation of matrix at quite small ∆tk. By means of 

Leibniz rule (7) one can establish that for any vector-

distribution 
0t

g D  the generalized function D(Yx) 

coincides with the distribution Y(Dx–A(t)x). Therefore, 

any solution of system (16) simultaneously satisfies to the 

system: 

( )x fD Y Y=  (22) 

Since at any x the matrix Y(.) is nonsingular, then it is 

true also converse proposition. In turn, the system (22) is 

equivalent to system of algebraic equations 

*x fY c Y= + , where c is arbitrary scalar vector. Hence 

follows the formula of general solution of the system (16) 

( )1 1. * fX Y c Y Y− −= +  (23) 

where, Y-1 is matrix inverse for Y. Analysis of the formula 

(14) shows that the system (16) in class 
0t

D has a single 

solution described with generalized function 

( )1 *f fx Y Y= − , called the system (16) response to 

perturbation f [13]. By solution of the system (16) “with 

initial condition x°=x(t0)” one can understand this system 

response to perturbation x°δt0+f. This response by 

principle of superposition is a sum of responses to 

components x°δt0 and f and, therefore, is described with 

generalized function x=Y-1(η*Yx°δt0)Y
-1(η*Yf). Since the 

distribution Yx°δt0 is the generalized function 

Y(t0)x°δt0=x°δt0 and because of first equation in (3) 

η*x°δt0=x°ηt0, then finally we obtain formula: 

( )1 1
, 0 0 *f t t fx Y x Y Y − −=  +  (24) 

If the distribution f is regular, then η*Yf is also a 

regular functional, originated by ordinary function 

( ) ( ) ( ) ( ) ( ) .
t

t Y f d Y f d       


− −
− =   Hence, it is 

seen that in this case the regular vector-distribution (24) 

corresponds to ordinary vector-function, which on [t0, ∞) 

coincides with classic solution of Cauchy problem for the 

system (7) with assumed initial condition x°. Matrix Y(t) 

is defined also by convergence method 

1 00
( ) ( ( )) ( ) ( 1,2,...), ( ) .

t

k kt
Y t A t Y t dt k Y t E−= − = =  Hence, 

considering equation 0 ( )t
tY A=  − , we find: 

1 0 ( )t
tY A− =   (25) 

and for the calculation of value Y-1(t) at any fixed 

( , ) [0, )t a b    one can use the appropriate Equation 

(21). 

 

5. APPLICATION OF OPERATOR CALCULUS TO 

PULSE CIRCUITS 

 

5.1. Action of Pulsed Circuits 

Analysis of transient processes in linear electric 

circuits, one of main stages of which is a solution of 

differential or integro-differential equations, can be 

performed by means of operator method on the basis of 

operator calculus for generalized functions. Peculiarities 

of its application for the solution of equations of linear 

circuits with sources of pulse voltage we will consider on 

the example of single-loop electric circuits represented by 

Figures 1 and 2 from paper [5]. Circuit capacitance 

voltage (Figure 1) and inductance current were equal to 0 

prior to the moment of action of voltage source U°δ(t). It 

is necessary to determine currents of such circuits, 

formed by the action of pulse voltage sources. Current of 

the circuit in Figure 1 is described by Equation (26) in 

generalized functions: 

0
 

1
{ } { } ( ) , 

t

iR t i t dt U
C

tt
−

+ −=    +  (26) 

In operator calculus for generalized functions D+
  

Equation (26) will be written as 
1

( ) { } ( ).
U

s i t s t
RC R

+ =  

Hence we found the representation of the solution in 
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operator form { } . ( )
(1/ )

s U
i t s t

s RC R
=

+
 or 

1/
{ } (1 ) ( ),

1/

RC U
i t t

s RC R
= −

+
 where 1=δ(t).  

Applying the relation ( )* ( ) ( ),t t t  = { }* ( ) { }t t t  =

and 
1

( )ate t
s a

−=
+

we will obtain solution in 

distributions of Equation (26): 
1

2
{ } ( ) { }RC

U U
i t t e t

R R C
 =  (27) 

Circuit current in Figure 2 can be determined by 

operator method of solution of equations in generalized 

functions 

{ } { } ( ) , L tDi t Ri t U t −   ++ =  (28) 

The Equation (28) is written in operator form 

corresponds equation { } { } ( )Lsi t Ri t U t+ = , solving it, 

we find { } { }.
U R

i t e t t
L L

=   

 

5.2. Action of Intermittent Sources 

Let in the circuit input (Figure 3 in [5]), which 

represents a capacitance voltage divider with load in the 

form of resistance, the voltage source u{t}=Ueωtη{t} 

starts to operate. Assuming that voltages on capacitances 

up to the moment of start of action of intermittent source 

were equal to zero, it is necessary to determine the source 

current and voltage in the divider output. 

Equation of loop currents in this circuit will be written 

in generalized functions as 

11 1 12 2

0 0

21 1 22 2 2

0 0

{ } { } { }

{ } { } { } 0

t t

t t

S i t dt S i t dt u t

S i t dt S i t dt Ri t

− −

− −

+ =

+ + =

 

 

 (29) 

where, 11 22 12 21
1

1 1 1 1
,  ,  S S S S

c c C C
= + = = = −  are self-

capacitance and general inverse capacitance of the circuit. 

Using the Equation (11), we will write operator 

equations, corresponding to Equations (29): 

11 1 12 2

22 1 22 2 2 2

1
[ { } { }]

1
[ { } { } { }] { } 0

U
S i t S i t

S S W

S i t S i t Ri t Ri t
S

+ =
−

+ + + =

 (30) 

Solving the system (30) of linear algebraic equations 

relative to i1{t} and i2{t}, we find: 

1 1
1

2 1
1

1
{ } .

1 ( )

1
{ } .

1 ( )

s sRC
i t UC

s w sR C C

s
i t UC

s w sR C C

+
=

− + +

=
− + +

 (31) 

After realization of operator functions, we will obtain 

1 1
1

1 1

2
1

2
1 11

{ } ( )
1 ( )

1
{ }

1 ( ) ( )( )

CC U C
i t U t e t

C C R C C

UC t
e t

R C C R C CR C C


 







= + +

+ + +

−
+   

+ + ++ 

 (32) 

Voltage on resistance is calculated by 2{ } { }Ru t i t R=  , 

where i2{t} is determined by expression (32). 

 

6. CIRCUITS WITH MULTIPLE COMMUTATOR 

There is voltage source u{t} (Figure 4 in [5]), 

containing regular and pulse compositions, which operate 

in the moments ts of commutator actuations: 

  ( ) ( ) ( ) ( )

( ) ,    1 1 

s s s s

s s s s

u t u t l t t u t l t t

U t t t t t

−



= − + − +

+ − −   +
 (33) 

At selected positive directions of voltages and 

currents the equations of loop currents in generalized 

functions are written as follows: 

1

1 1 2

{ } ( ( ) ( )) ( )( { } { })
 , ( )

{ } ( ) { } ( ( ) ( ) { }k

u t D L t i t R t u t ik t
t

uk t R t i t R t R t i t

= + + 
−   

= + +  
  (34) 

Excluding commutator current ik{t} from (34), we 

will obtain equation: 

1 2

1 2

1

1 2

( ) ( )
{ } ( ) { } '( ) .

( ) ( )

( )
. ( ) { }

( ) ( )
k

R t R t
u t L t Di t L t

R t R t

R t
i t u t

R t R t

 
= + + 

+ 

+
+

 (35) 

In accordance with the commutator actuation mode, 

its voltage uk{t} is expressed as uk{t}=R1(t).i(t) in the first 

interval of commutation cycle, when commutator takes 

up the “off” position, and uk{t}=0 is in the second 

interval, when the commutator takes up the “on” position. 

Substituting uk{t} value in (35), after division of general 

parts of this equation by L(t), we will obtain (7) type 

equation relative to y{t}=i{t}. Assuming that functions 

are smooth and positive at (0, )t   , for the solution of 

equation in generalized functions obtained for y{t} one 

can use the Equation (15). 

 

7. COMPARISON WITH METHODS OF ONE-SIDED 

LAPLACE TRANSFORMS AND CONCLUSIONS 

Differential or integro-differential equations for the 

momentary values represent the “voltage-current” 

relationship directly after occurrence of transient 

processes, which is described on the basis of general 

provisions on the continuity of cumulative charge of 

capacities of each node and cumulative flux linkage of 

inductances of each closed loop. Based on these 

provisions the transition can be performed from initial 

conditions 0- to initial conditions 0+ implemented by 

means of set-up and solution of Kirchhoff equations for 

pulse amplitudes.  

The solutions of equations for the momentary values 

can be obtained [5] only based on transform L+ and 

require the knowledge of initial conditions 0+.  However, 

this transform defines only regular composition of solution.  
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The difference of the transform L-, used for the 

equations in generalized functions, is a possibility for the 

determination both regular and singular compositions of 

the solution with direct use of initial conditions 0-. As it 

was mentioned in the introduction, the image reversal     

F-(p)=L-[f(t)] coincides with the image reversal 

F+(p)=L+[f(t)] and gives only regular composition 

f+(t)η(t).  

Amplitudes of functions of singularities of the 

solution are obtained in [5] only by means of sequential 

calculation of coefficients Cq, Cq-1, …, C0 at                  

δ(q)(t), δ(q-1)(t), …, δ(0)(t)=δ(t) relatively. 

In this paper the advantages of use of operator 

calculus in the space D+
  of all generalized functions with 

bounded support for the solution of differential equations, 

describing the transient processes in linear electric pulse 

circuits with concentrated parameters, being time-

constant or time-variable, are shown.  

At pulse actions, containing Dirac delta function and 

its product, the explicit solution representation in the 

form of vector-distribution (6) for the system of linear 

differential equations (1) in generalized functions with 

constant coefficients and the solution in the form of 

vector-distribution (15) for the system of equations (7) 

with variable coefficients are obtained. For the numerical 

solution of the system (7) the approximate formula (12) 

with the accuracy to first order infinitesimals is obtained. 
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