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Abstract- For ensuring stability of medium-contacting 

cylindrical shells subjected to the action of various forces, 

the designers have to stiffen them with ribs. Since 

cylindrical shape constructions and structural elements 

are widely used in industry and civil engineering fields, 

the problems related to their dynamical rigidity 

characteristics still retain their relevance. The goal of the 

present paper is to find natural vibrations frequency of an 

orthotropic cylindrical shell contacting with fluid-filled 

inner channel and stiffened with rings, to study influence 

of parameters characterizing this medium to these 

frequencies. In the paper we consider a rigid contact that 

takes into consideration that the shift is impossible 

without leaving tangential surfaces of an orthotropic shell 

and medium each other. Using the Hamilton-

Ostrogradsky variational principle in the solution of the 

problem, we make use the system of motion equations of 

the obtained cylindrical shell, the system of motion 

equations of the elasticity system in displacements. For 

finding natural vibrations frequencies of the system using 

the contact conditions between the cylindrical shell solid 

medium-fluid, the obtained equation was studied by the 

analytical method. In the calculation process, the 

properties of the Bessel function were used. The graphs 

of dependence of the natural vibration frequencies of the 

system of the radius of the channel and density of fluid 

were structured. 

 

Keywords: Shell, Solid Medium, Liquid, Friction Force, 

The Variational Principle, Frequency, Orthotropic. 

 

1. INTRODUCTION                                                                         

Vibrations and stability problems of medium-

contacting smooth cylindrical shells were studied in the 

monograph [1]. The monograph [2] studies the solution 

of the problems of vibrations and stability of stiffened 

isotropic cylindrical shells. Vibrations and stability of 

smooth cylindrical shells were considered in [3]. The 

stability of a medium-contacting, stiffened isotropic 

cylindrical shell subjected to the action of compressive 

force was considered in [4, 5]. The monograph [6] was 

devoted to vibrations and stability of fluid and solid 

medium-contacting smooth cylindrical shells.  

In [7-9], for studying free and forced vibrations of a 

fluid-filled cylindrical shell stiffened with rods and 

subjected to the compressive force a physical and 

mathematical model was structured. In axially-symmetric 

and asymmetric cases of vibrations, the frequency 

equation of the system was structured, its approximate 

roots were found and influence of geometrical, physical, 

mechanical parameters characterizing this system on 

these roots were studied.  Free vibrations of an isotropic 

inhomogeneous, moving fluid-contacting cylindrical shell 

stiffened with cross system of ribs were studied in [10].  

In the paper [11] natural vibrations of flowing fluid 

interacting, cylindrical shell inhomogeneous in thickness, 

are studied. Using the Hamilton-Ostrogradsky variation 

principle in the solution of the problem, for studying free 

vibrations of a flowing-fluid-contacting cylindrical shell  

inhomogeneous in thickness and stiffened with rings, a 

system of equations was constructed. Homogeneity of the 

thickness of the cylindrical shell was taking into account 

accepting the Young modulus and density of the material 

as a function of coordinate alternating along the 

thickness.   

When studying vibrations of a cylindrical shell 

inhomogeneous along the thickness and stiffened with 

annular ribs and dynamically interacting with flowing 

fluid, we considered two cases: a) fluid is at rest inside 

the cylindrical shell b) fluid moves with constant velocity 

inside the cylindrical shell. In both cases, the frequency 

equation was structured and its roots were found. In the 

calculation process, linear and parabolic cases of 

alternation of inhomogeneity function with respect to the 

coordinate were considered. 

 

2. PROBLEM STATEMENT 

The system of motion equations of fluid and solid 

medium-contacting cylindrical shell with inner channel, 

stiffened with rings, located in the plane perpendicular to 

the axis in the displacements is in the following form: 

( )
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In the system (1) , ,u w  are displacements of the 

points of the shell, ,R h  are radius and thickness of the 

cylindrical shell, respectively, sE is an elasticity modulus 

of ring-shaped ribs, sF  is the area of the cross-section of 

the shell, .,xs kp sJ J  are inertia moments of the cross-

section of the shell, , ,x y zq q q  are pressure force 

components acting on the cylindrical shell as viewed 

from fluid, 2k  is the amount of ring-shaped ribs, sG  is 

elasticity modulus of ribs in shift, 0 , s   are densities of 

the materials of cylindrical shell and ring-shaped ribs, 

12G  is an elasticity modulus of the cylindrical shell in 

shift, iE  are elasticity modulus of the cylindrical shell in 

the direction of coordinate axes, 12 21,v v  is the Poison 

ratio of the materials of the cylindrical shell, sh is the 

thickness of the ring-shaped shell, and 1L  is the length of 

the cylindrical shell. 

The system of motion equations of the medium is 

written in the cylindrical coordinates as follows [6]: 

( )
2

2

2
2 2 0s x x
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where, , ,x rs s s  are the components of displacements 

vector of the medium, ,s s   are Lame coefficients of 

the medium, s  is medium’s density, , ,x r   are 

longitudinal, radial and circular coordinates and 

2
,  s s s

t e
s s

a a
+

= =
  

 
. 

The volume expansion  and the components 

, ,x r    are calculated by means of the expressions: 

1
,xr r
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The stresses arising in the medium are expressed by 

the displacements , ,x rs s s as follows: 

( )

1

1 1
2

x r
rx s

r
r s

rx r
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s s
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s s
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srss s
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 (3) 

The motion of fluid moving with velocity
 

U
 

with 

respect to the potential
 


 
is as follows [7]: 

2 2 2
2

2 2 2 2
0

1
2 0U U

R ta t R
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 − + + =     

  


 
 (4)  

To the systems (1), (2) and Equation (4) we add 

contact conditions. Rigid contact between solid medium 

and cylindrical shell is considered. In this case the contact 

conditions consist of the followings:    

- Equality of displacements  

,  ,x rs u s s w= = =    ( )r R=  (5)                                                   

- Equality of pressure forces  

,  ,  ( )x rx r r rrq q q r R= − = − = − =     (6) 

Equality of velocity and pressure in the radial 

direction in the contact of medium-fluid is satisfied:                       

0
1

r r a
r a

w w
U

r t R=
=

   
= = − + 
   


 


 (7) 

0,  0,  ( )rx r rr p r a= = = − =    (8) 

To the contact conditions (5)-(9), we add the 

following boundary conditions. It is considered that the 

cylindrical shell was highly supported at the edges, i.e. in 

the sections 0=  and  1 1 1( / )L R= =    

- The conditions 

1 10, 0w T M= = = =
 

(9) 

- For the medium the conditions   

0; 0xx rs s= = =
 

(10) 

are satisfied. 

Thus, the solution of the stated problem is reduced to 

finding natural vibrations of a construction with flowing 

fluid, with a channel in the domain and stiffened with 

rings, to joint integration of the system of motion 

equations of the cylindrical shell (1), of solid medium (2), 

of fluid (4) within the contact conditions (5)-(8) and 

boundary conditions (9) and (10). 
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3. PROBLEM SOLUTION 

We look for the potential   of perturbations in fluid 

in the following form: 
 

( ) ( )1 1 1, , , cos sin sinr t f r n kx t=    
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Using (11), (7) and (8), we get: 
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 In equalities (13) 0 1
1

0

/U R
M

a

+
=

  
, 

2 2R−= 

( )2 2
11 ,M −  ( )2 2 2 2

1 1 1 ,R M−= −  nI  is the n-th order 

modified, nJ  is n-th order first kind Bessel functions.  

Since the point zero is not the inner point of medium, 

when the iteration effect of the medium on the vibration 

process is weak, the displacement vector components of 

the medium are in the following form [6]: 

( )
4(1 ) ( ) ( )n

x s n s n s

I kr
s kr v kI kr A kI kr B

r
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We will look for the solutions of the shell as follows: 

 

 

 

 

1 1cos cos sinu A n t=          

1 1sin sin sinB n t=      (15) 

1 1cos sin sinw C n t=                                          

By means of the contact and boundary conditions (5)-

(8) for determining the constants , , , , ,s s s s s sA B C A B C  we 

get the following system of equations: 
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        By means of this system we express the quantities 

, , , , ,s s s s s sA B C A B C  by the constants A, B, C: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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1 1 1
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s

s

s

s
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−

−
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−

−

−
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=    + 

=   +  + 

=   +  + 

 (17) 

where,  is the principal determinant of the system (16), 
( )j
i  are auxiliary determinants. Taking into account the 

expressions (17) of the constants , , , , ,s s s s s sA B C A B C  in 

the last equality, we get: 
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11 12( ); 2 ( ) ( ) ;n n np n I p n I I= − = −      

2 2
13 ( ) ( ) ( );n n np I I n I = − +      

( )2
14 15( ); 2 ( ) ( ) ;n n np n K p n K K= − = −      

2 2
16 ( ) ( ) ( )n n np K K n K = − +      

( ) 2
11 2(1 2 ) ( ) 2 ( ) ;s n nr v I I = − +     

( )2
12 132 ( ); 2 ( ) ( ) ;n n nr I r n I I = − = −      

( ) 2
14 2(1 2 ) ( ) 2 ( ) ;s n nr v K K = − +     

( )2
15 162 ( ); 2 ( ) ( )n n nr K r n I I = − = −      

 

Using equalities (18) and contact conditions (6), we 

can find the pressure components , ,x rq q q . We show 

these expressions in the following form: Taking into 

account 

 

( )1 2 3 cos sinx x x xq C A C B C C n= + +  
              

 

( )1 2 3 sin sinq C A C B C C n= + +     
   

(19) 

( )1 2 3 cos sinr r r rq C A C B C C n= + +    

with respect to the constants , ,A B C  we get the 

following system of homogeneous equations:  

11 12 13

21 22 23

31 32 33

A 0

A 0

A 0

B C

B C

B C

+ + =


+ + =
 + + =

  

  

  

  (20)                            

Necessary and sufficient condition for the existence of 

non-zero solution of the system is the equality of its 

principal determinant to zero: 

ijdet 0 ,  , 1, 2,3i j= =  (21) 

 

4. CONCLUSIONS 

The Equation (21) was studied by the numerical 

method. The following values were taken for the 

parameters: 
9 26.67 10 N/m ;  1.39 mm;  160 m  ms sE h R=  = =  
2

12 2125 N/mm ;  0.3;  308 m/sz tq v v a= = = =  
2 40.45;  5.75 mm ;  19.9 mms xsh F J= = =  

4
. 10.48 mm ;  1;  4;  5 m;  2.25kp s l tJ m n L a a= = = = =  

The results of calculations were given in figure 1 in 

the form of dependence of natural vibrations frequency 

on the channel radius, in Figure 2 in the form of 

dependence of natural vibrations frequency on fluid 

density for various ratios of elasticity constants of the 

shell material. As can be seen from the figure, natural 

vibrations frequencies of the system increase according to 

the increase of the channel radius and strengthening of 

orthotropic properties of the cylindrical shell. Figure 2 

shows that as the fluid density increases, the system’s 

natural vibrations frequencies decrease. In both graphs, 

2 20k = corresponds to broken lines 2 15k =  corresponds 

to solid lines. As can be seen from the figure, natural 

vibration frequencies of the system increase according to  

the number of rings.  

 

 

           

 

 

 

 

 

 

 

 

 

 

 
 

               
 

Figure 1. Dependence of the system’s natural vibrations frequency on 

the medium’s channel 
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Figure 2. Dependence of the system’s natural vibration frequency on the 

fluid density 
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